

Abstract

In 2014, Demailly and Pham [5] gave a sharp lower bound on the log canonical threshold of a finitecolongth ideal $I \subset \mathbb{C}\{x_1, \ldots, x_n\}$ in terms of the mixed multiplicities of I. We give an analogous lower bound on the F-pure threshold in positive characteristics. In equal characteristic, we show that the class of homogeneous ideals realizing the minimum admits a simple classification.

Log Canonical Threshold

Let $R = \mathbb{C}[x_1, \ldots, x_n], \quad I = (f_1, \ldots, f_r) \subseteq (\underline{x}).$ The log canonical threshold of I at 0 is a positive number which measures the singularities of (R, I):

 $\operatorname{lct}(I) = \sup \left\{ \begin{aligned} \lambda > 0 : (|f_1|^2 + \dots + |f_r|^2)^{-\lambda} \\ \text{is locally integrable at } 0. \end{aligned} \right\}$

Properties of the LCT

1 The log canonical threshold can be computed from the data of a log resolution of (R, I). $2\operatorname{lct}(I)$ does not depend on the choice of generators f_1, \ldots, f_r . $\operatorname{\mathfrak{slct}}(I) \in \mathbb{Q} \cap (0, \operatorname{codim}(I)]$ $\mathbf{A}R/I$ smooth at $0 \implies \operatorname{lct}(I) = \operatorname{codim}(I)$. $\mathbf{5}I \subseteq J \implies \operatorname{lct}(I) \leq \operatorname{lct}(J).$ $\operatorname{\mathfrak{o}lct}(I) = \operatorname{lct}(\overline{I})$, where \overline{I} is the integral closure.

F-Pure Threshold

Let k be a field of characteristic p > 0. Set $R = k[x_1, \ldots, x_n], \quad \mathfrak{m} = (x_1, \ldots, x_n) \supseteq I.$ The *F*-pure threshold of I at \mathfrak{m} is a positive number which measures the F-singularities of the pair (R, I).

$$\operatorname{fpt}(I) = \sup\left\{\frac{a}{p^e} : I^a \not\subseteq \mathfrak{m}^{[p^e]}\right\}.$$

The fpt satisfies properties analogous to (3)-(6).

Classification of Minimal Singularity Thresholds

Benjamin Baily

University of Michigan

Notation and Conventions

Fix the following conventions.

- k denotes an algebraically closed field
- $R = k[x_1, \ldots, x_n], \mathfrak{m} = (x_1, \ldots, x_n)$
- $I \subseteq R$ is a homogeneous **m**-primary ideal.

Important Convention

$c(I) = \left\{ \begin{array}{l} \\ \end{array} \right.$	$\int \operatorname{lct}(I)$	char $k = 0$
	${ m fpt}(I)$	char $k > 0$

Mixed Multiplicities and the **Demailly-Pham Invariant**

There are
$$e_0(I), \ldots, e_n(I) \in \mathbb{Z}^+$$
 s.t. for $r, s \in \mathbb{Z}^+$:
 $n! \cdot \text{length}\left(\frac{R}{I^r \mathfrak{m}^s}\right)$
 $= \sum_{j=0}^n \binom{n}{j} e_j(I) r^j s^{n-j} + O((r+s)^{n-1}).$
The $e_j(I)$ are the mixed multiplicities of I and \mathfrak{m} .

Alternatively, for general $h_{j+1}, \ldots, h_n \in R_1$: Т\\

$$_{j}(I) = e\left(\frac{I + (h_{j+1}, \dots, h_{n})}{(h_{j+1}, \dots, h_{n})}\right).$$

- $e_0(I) = 1$ • $e_1(I) = \operatorname{ord}_{\mathfrak{m}}(I)$ $\bullet e_n(I) = e(I)$
- $e_i(I) = e_i(I)$

The main result of [5] is the following lower bound for an \mathfrak{m} -primary ideal J:

$$\operatorname{lct}(J) \ge \frac{1}{e_1(J)} + \frac{e_1(J)}{e_2(J)} + \dots + \frac{e_{n-1}(J)}{e_n(J)}.$$
 (1)

Let DP(J) denote the RHS of (1).

Corollary 3.11 [1]

If char k = p > 0 and J is **m**-primary, then $\operatorname{fpt}(J) \ge \operatorname{DP}(J).$

Main Theorem 4.14 [1]

If c(I) = DP(I), then $e_{j+1}(I)/e_j(I) \in \mathbb{Z}^+$ for $0 \leq j \leq n-1$. Moreover, up to linear change of coordinates and integral closure, we have $I = \left(x_1^{e_1(I)}, x_2^{e_2(I)/e_1(I)}, \dots, x_n^{e_n(I)/e_{n-1}(I)}
ight).$

Proof of Main Theorem 4.14

• Write $I =: I_1 + \ldots I_r$, where I_j generated by d_i -forms and $d_1 < \cdots < d_r$.

• Study $I|_L$ for general linear spaces $L \subseteq \mathbb{A}^n_k$ of varying codimension to control the ideals I_i , and induct on r with base cases r = 1, 2.

• r = 1: [4, Theorem 1.4] or [6, Proposition 4.5]. • r = 2: In char 0, follows from [3, Theorem 3.5]. In char p > 0, a new argument is needed.

Theorem A [2]

Let char k > 0, and let $J \subseteq R$ be an ideal generated by d-forms. Then fpt(J) = codim(J)/dif and only if, up to change of coordinates and integral closure, we have $J = (x_1, \ldots, x_{\text{codim}(J)})^d$.

Future Work

• Theorem 4.14 fails for non-homogeneous ideals: consider $I = (x + y^2, y^3) \subseteq k[x, y].$ • If we extend to k[x, y] and allow non-linear changes of coordinates, there is still hope: if $\varphi: k[x, y] \to k[x, y]$ such that $\varphi(x + y^2) = x$ and $\varphi(y) = y$, then

$$\varphi(\overline{I}) = \overline{(x,y^3)}$$

 $(\phi \circ$

- 2025. Preprint.
- [2] B. Baily. F-pure thresholds of equigenerated ideals, June
- [3] T. De Fernex, L. Ein, and M. Mustață. Bounds for log canonical thresholds with applications to birational rigidity. Mathematical Research Letters, 10(2):219–236, 2003.
- [4] T. De Fernex, L. Ein, and M. Mustață. Multiplicities and log canonical threshold. Journal of Algebraic Geometry, 13(3):603-615, Sept. 2004.
- [5] J.-P. Demailly and H. H. Pham. A sharp lower bound for the log canonical threshold. Acta Mathematica, 212(1):1-9, 2014.

- [6] S. Takagi and K.-i. Watanabe. On F-pure thresholds. Journal of Algebra, 282(1):278–297, Dec. 2004.

This research was conducted at the University of Michigan while the author was funded by NSF grant DMS-2101075 and NSF RTG grant DMS-1840234. Thanks to my advisor, Karen Smith.



More info + preprints

Local Conjecture

Let k be an algebraically-closed field and $(R, \mathfrak{m}) = (k[\![x_1, \ldots, x_n]\!], (\underline{x})).$ Let $I \subseteq R$ be **m**-primary with c(I) = DP(I). Then $e_{j+1}(I)/e_j(I) \in \mathbb{Z}^+$ for $0 \leq j \leq n-1$. Moreover, there exists an automorphism $\varphi: R \to R$ with $\varphi(\bar{I}) = \overline{(x_1^{e_1(I)}, x_2^{e_2(I)/e_1(I)}, \dots, x_n^{e_n(I)/e_{n-1}(I)})}.$

Analytic Question

Let $\Omega \subset \mathbb{C}^n$ be a bounded, convex domain containing 0. Let $\phi : \Omega \to \mathbb{R} \cup \{-\infty\}$ be plurisubharmonic with an isolated singularity at 0. Suppose $c(\phi) = DP(\phi)$ (see [5] for relevant definitions). Must there exist $\varphi : \mathbb{C}^n \to \mathbb{C}^n$, biholomorphic at 0, such that $\varphi(0) = 0$ and

$$(\varphi)(z) = \left(\log \max_{0 \le i \le n-1} \frac{e_{i+1}(\phi)|z_i|}{e_i(\phi)}\right) + O(1)?$$

References

[1] B. Baily. Classification of minimal singularity thresholds, June 2025. Preprint.

Acknowledgements