ON LOWER BOUNDS FOR THE F-PURE THRESHOLDS OF EQUIGENERATED IDEALS

BENJAMIN BAILY

ABSTRACT. Let k be a field of characteristic p > 0 and $R = k[x_0, \ldots, x_n]$. We consider ideals $I \subseteq R$ generated by d-forms. Takagi and Watanabe proved that $\operatorname{fpt}(I) \ge \operatorname{height}(I)/d$; we classify ideals I for which equality is attained. Additionally, we describe a new relationship between $\operatorname{fpt}(I)$ and $\operatorname{fpt}(I|_H)$, where H is a general hyperplane through the origin. As an application, for degree-d homogeneous polynomials $f \in R$ with $p \ge n-1$, we show that either p divides the denominator of $\operatorname{fpt}(f)$ or $\operatorname{fpt}(f) \ge r/d$, where r is the codimension of the singular locus of f.

1. Introduction

The F-pure threshold, introduced by Takagi and Watanabe [26], is a numerical singularity invariant of pairs in positive characteristic. The F-pure threshold was proposed as a positive-characteristic analog of the log canonical threshold; whereas the log canonical threshold is widely studied in birational and complex-analytic geometry, the F-pure threshold better reflects the subtleties of singularities in prime characteristic.

We consider a pair (R, I), where R is a polynomial ring over a field and I is generated by homogeneous forms of degree d. In this setting, Takagi and Watanabe proved the following sharp lower bound on the F-pure threshold $\operatorname{fpt}(I)$:

Proposition 1.1 ([26], Proposition 4.2). Let k be a field of positive characteristic and set $R = k[x_0, \ldots, x_n]$. Suppose $I \subseteq R$ is generated by forms of degree d. If h is the height of I, then $\operatorname{fpt}(I) \geq h/d$.

If we instead consider a field of characteristic 0 and the log canonical threshold (lct), much more is known. We refer the reader to [18] for background on log canonical singularities and the lct.

Theorem 1.2 ([6], Theorem 3.5). Let k be an algebraically closed field of characteristic zero and set $R = k[x_0, \ldots, x_n]$. Suppose $I = (f_1, \ldots, f_r) \subseteq R$ is generated by forms of degree d. Let e denote the codimension of Z, where Z is the non-klt locus of $(R, I^{lct(I)})$. Then we have $lct(I) \ge e/d$ with equality if and only if there exist independent linear forms $\ell_1, \ldots, \ell_e \in R$ such that $Z = (\ell_1, \ldots, \ell_e)$ and $f_i \in k[\ell_1, \ldots, \ell_e]$ for all $1 \le i \le r$.

Our goal is to bridge the gap between Proposition 1.1 and Theorem 1.2. As we show in Example 5.2, a naive translation of Theorem 1.2 into characteristic p is not true without an additional hypothesis. Towards the goal of bridging this gap, we contribute two results. The first is a classification of ideals for which the lower bound in Proposition 1.1 is sharp.

Theorem A. Let k be an algebraically-closed field of characteristic p > 0. Let I be a homogeneous ideal in $k[x_0, \ldots, x_n]$ generated by d-forms. If h is the height of I, then $\operatorname{fpt}(I) = h/d$ if and only if $\overline{I} = (x_0, \ldots, x_{h-1})^d$ up to change of coordinates.

The proof of Theorem A goes as follows. First, we prove the claim in the case that I is complete intersection of height n, see Lemma 3.15. In this case, let \mathfrak{p} be a minimal prime over I. Since \mathfrak{p} is the ideal of a point in \mathbb{P}^n , we may change coordinates so that $\mathfrak{p} = (x_1, \ldots, x_n)$. We then transform

The author was supported by NSF grant DMS-2101075 and NSF RTG grant DMS-1840234.

Theorem A to a statement about the monomial ideals $\{in_{>_{lex}}(I^m)\}_{m>0}$, which we solve using convex geometry. After applying estimates for the Hilbert series of powers of I (Lemma 3.16, the result is a consequence of a 1960 result of Grünbaum, Theorem 3.6.

To generalize beyond the case of a complete intersection, we note that h := height I, then any general d-forms in I generate a complete intersection $J \subseteq I$, and we show that J is a reduction of I. To generalize beyond the case that height I = n, we consider $I|_H$, where H is a general hyperplane through the origin. By Proposition 1.1, we have $h/d \leq \text{fpt}(I|_H) \leq \text{fpt}(I) = h/d$, so $\overline{I}|_H = (x_0, \dots, x_{h-1})^d$. By Proposition 3.4, we deduce that I has the same form.

Our second contribution is a lower bound fpt(R, f) in terms of the codimension of the singular locus of f. Compare with [5, Theorem 1.1], a preprint which was later superseded by [6].

Theorem B. Suppose char k = p > 0 and $R = k[x_0, ..., x_n]$. Suppose that $f \in R$ is homogeneous of degree d, that f is smooth in codimension c, and that p does not divide the denominator of $\operatorname{fpt}(f)$. Further suppose that $c \ge n$ or $p \ge c$. Then $\operatorname{fpt}(f) \ge \min(c/d, 1)$.

In the case that $h \ge n$, we observe that $(R, f^{\text{fpt}(f)})$ has an F-pure center which is a monomial ideal and apply a Fedder-type criterion from [23], see Lemma 5.3. When h < n, we reduce to the case h = n by intersecting with a general hyperplane through the origin and applying the following Bertini theorem for F-purity:

Theorem C. Let k be an infinite field of characteristic p > 0. Let $R = k[x_0, \ldots, x_n]$. Let $I \subseteq R$ be an ideal generated by forms of degree at most d. Let $H \in (\mathbb{P}^n)^{\vee}$ be a general hyperplane through the origin. Then for all $0 \le t < \frac{n}{d} - \frac{n-1}{pd}$, the pair (R, I^t) is sharply F-split if and only if $(H, I^t|_H)$ is sharply F-split.

A Bertini theorem for F-purity of pairs is already known [25, Theorem 6.1]. Schwede and Zhang's result, however, considers a general member of a free linear system, whereas Theorem C considers a general member of a linear system with $0 \in \mathbb{A}^{n+1}$ as a base point. To ensure that neither [25, Theorem 6.1] nor Theorem C implies the other, we demonstrate in Example 4.4 that the exponent $\frac{n}{d} - \frac{n-1}{nd}$ is optimal.

2. Preliminaries

2.1. The F-Pure Threshold. For detailed background on the F-pure threshold, we direct the reader to [24, 26]. In this subsection, we summarize several key definitions and results.

Definition 2.1. Let R be a ring of characteristic p > 0. We let F_*R denote the R-module structure on R given by restriction of scalars along the Frobenius map $F: R \to R$. We say R is F-finite if F_*R is module-finite over R.

Definition 2.2 ([24]). Let R be an F-finite ring, $I \subseteq R$ an ideal, and $t \in \mathbb{R}^+$. The pair (R, I^t) is sharply F-split if for some (equivalently, infinitely many) e > 0, the map

$$I^{\lceil t(p^e-1) \rceil} \cdot \operatorname{Hom}(F_*^e R, R) \to R$$

is surjective.

Definition 2.3 ([26]). The *F*-pure threshold of the pair (R, I) is the supremum of all t such that (R, I^t) is sharply *F*-split. We denote this quantity by fpt(R, I), or fpt(I) when the ambient ring is clear.

In practice, the following proposition is a more useful characterization of the F-pure threshold.

Proposition 2.4. Let (R, \mathfrak{m}) be an F-finite regular local ring. Then the F-pure threshold of the pair (R, I^t) is equal to

$$\sup\left\{\frac{\nu}{p^e}:I^\nu\notin\mathfrak{m}^{[p^e]}\right\}.$$

In fact, let $\nu_I(p^e) = \max\{r : I^r \notin \mathfrak{m}^{[p^e]}\}$. Then the F-pure threshold of (R, \mathfrak{a}) is equal to the limit $\lim_{e \to \infty} \nu_I(p^e)/p^e$. If instead R is a polynomial ring over an F-finite field and $I \subseteq R$ a homogeneous ideal, then the same results hold when we let \mathfrak{m} denote the homogeneous maximal ideal of R.

Proof. The first claim follows from [26, Lemma 3.9]. The existence of the limit is [19, Lemma 1.1]. For the graded setting, see [3, Proposition 3.10]. \Box

Proposition 2.5 (Properties of the F-pure threshold). Let R be a reduced, F-finite, F-pure ring of characteristic p > 0. Then for all ideals $I \subseteq R$ such that I contains a nonzerodivisor, we have

- (i) If $I \subseteq J$, then $fpt(I) \le fpt(J)$.
- (ii) For all m > 0, we have $\operatorname{fpt}(I^m) = m^{-1} \operatorname{fpt}(I)$.
- (iii) We have $\operatorname{fpt}(I) = \operatorname{fpt}(\overline{I})$, where \overline{I} denotes the integral closure of I.

Proof. See [26, Proposition 2.2] (1), (2), (6).

Proposition 2.6. Let $R = k[x_0, ..., x_n]$. Let > be a monomial order. Let $I \subseteq R$ be an ideal, and $\text{in}_{>}(I)$ the initial ideal of I with respect to >. Then $\text{fpt}(\text{in}_{>}(I)) \leq \text{fpt}(I)$.

Proof. See [26], the claim preceding Remark 4.6.

2.2. Newton Polytopes of Monomial Ideals. When working with monomial ideals, one often identifies a monomial $x_0^{a_0} \cdots x_n^{a_n}$ with the point $(a_0, \ldots, a_n) \in \mathbb{Z}_{\geq 0}^{n+1}$. For future reference, it will help to give a name to this identification.

Definition 2.7. Let k be a field. We define the map

log: {monomials in
$$k[x_0, ..., x_n]$$
} $\to \mathbb{Z}_{\geq 0}^{n+1}$, $\log(x_0^{a_0} \cdots x_n^{a_n}) = (a_0, ..., a_n)$.

Definition 2.8. Let $\mathfrak{a} \subseteq k[x_0,\ldots,x_n]$ be a monomial ideal. Then the Newton Polytope of I, denoted $\Gamma(\mathfrak{a})$, is the convex hull in \mathbb{R}^{n+1} of $\log(\mathfrak{a})$. Later on, we will let $\operatorname{conv}(-)$ denote the convex hull of a set.

Remark 2.9. We record several properties of $\Gamma(\mathfrak{a})$.

- (i) $\Gamma(\mathfrak{a})$ is a closed, convex, unbounded subset of the first orthant of \mathbb{R}^n .
- (ii) When \mathfrak{a} is an \mathfrak{m} -primary ideal, the complement of $\Gamma(\mathfrak{a})$ inside the first orthant is an open, bounded polyhedron.
- (iii) For two ideals $\mathfrak{a}, \mathfrak{b}$, the Minkowski sum of $\Gamma(\mathfrak{a})$ and $\Gamma(\mathfrak{b})$ is equal to $\Gamma(\mathfrak{ab})$. In particular, $\Gamma(\mathfrak{a}^n) = n\Gamma(\mathfrak{a})$.

For the proof of Theorem A, we will also require the following.

Definition 2.10. We define the standard *n*-simplex $\Delta_n \subseteq \mathbb{R}^{n+1}$ as follows:

$$\Delta_n = \{(a_0, \dots, a_n) : 0 \le a_i, a_0 + \dots + a_n = 1.\}$$

Definition 2.11. Let $I \subseteq k[x_0, \ldots, x_n]$ be a homogeneous ideal and $t \in \mathbb{Z}^+$. We let $[I]_t$ denote the vector space of t-forms in I.

Definition 2.12. Let $\mathfrak{a} \subseteq k[x_0,\ldots,x_n]$ be a monomial ideal and $t \in \mathbb{Z}^+$. We define $\Gamma(\mathfrak{a},t)$ as the convex hull of $\log([\mathfrak{a}]_t)$, and we let $\gamma(\mathfrak{a},t)$ denote the relative interior of $\Gamma(\mathfrak{a},t)$ inside $t\Delta_n$.

Remark 2.13. It is sometimes the case that $\Gamma(\mathfrak{a},t) \subsetneq \Gamma(\mathfrak{a}) \cap t\Delta_n$, even if \mathfrak{a} is integrally closed. Consider $\mathfrak{a} = (x_0, x_1^3)$ as an ideal of $k[x_0, x_1]$; we have $(0.5, 1.5) \in (\Gamma(\mathfrak{a}) \cap 2\Delta_1) \setminus \Gamma(\mathfrak{a}, 2)$.

The following proposition shows that Newton polytope of a monomial ideal determines the F-pure threshold.

Proposition 2.14 ([15], Proposition 36). Let $\mathfrak{a} \subseteq k[x_0,\ldots,x_n]$ be a monomial ideal. Then

$$\operatorname{fpt}(\mathfrak{a}) = \frac{1}{\mu}, \text{ where } \mu = \inf\{t : t\vec{1} \in \Gamma(\mathfrak{a})\}.$$

Following the proof of [7], Theorem 1.4 and the terminology of [17], we also define the *limiting* polytope of a graded system of monomial ideals.

Definition 2.15. Let \mathfrak{a}_{\bullet} be a graded system of monomial ideals. That is, suppose $\mathfrak{a}_r\mathfrak{a}_s\subseteq\mathfrak{a}_{r+s}$ for all $r,s\in\mathbb{Z}^+$. We define $\Gamma(\mathfrak{a}_{\bullet})$ as the closure in \mathbb{R}^{n+1} of the ascending union $\{\frac{1}{2^m}\Gamma(\mathfrak{a}_{2^m})\}_{m>0}$.

Definition 2.16. Let > be a monomial order on R. We set $\Gamma_{>}(I) = \Gamma(\mathfrak{a}_{\bullet})$, where $\mathfrak{a}_n = \operatorname{in}_{>}(I^n)$.

2.3. Essential Codimension.

Definition 2.17 (Essential Codimension). Let $J \subseteq R = k[x_0, \ldots, x_n]$ be a homogeneous ideal. The essential codimension $\operatorname{ess}(J)$ is equal to the minimal r for which there exist linear forms ℓ_1, \ldots, ℓ_r such that J is extended from $I \subseteq k[\ell_1, \ldots, \ell_r]$.

Lemma 2.18. Let $I, J, \ell_1, \ldots, \ell_r$ be as in Definition 2.17. Then ess(I) = r.

Proof. The bound $\operatorname{ess}(I) \leq r$ is immediate. Conversely, if I is extended from an ideal $I' \subseteq k[\ell'_1, \ldots, \ell'_s] \subseteq k[\ell_1, \ldots, \ell_r]$, then J is extended from the same ideal, so $\operatorname{ess}(J) \leq \operatorname{ess}(I)$.

3. Classification of Minimal F-Pure Thresholds

3.1. A Bertini Theorem for Essential Codimension.

Convention 3.1. We identify $(\mathbb{P}^n)^{\vee}$ with the space of hyperplanes passing through $0 \in \mathbb{A}^{n+1}$, as opposed to the usual convention of identifying $(\mathbb{P}^n)^{\vee}$ with the space of hyperplanes in \mathbb{P}^n .

The following standard lemma relates the condition ess(J) < n+1 to a more familiar condition.

Lemma 3.2. Let k be an algebraically-closed field, $R = k[x_0, \ldots, x_n]$, and $J \subseteq R$ an ideal generated by d-forms f_1, \ldots, f_r . Then $ess(J) \le n$ if and only if there exists $p \in \mathbb{P}^n$ such that $J \subseteq \mathfrak{m}_p^d$.

Proof. If $\operatorname{ess}(J) \leq n$, then there exist $\ell_1, \ldots, \ell_n \in R_1$ such that J is extended from $k[\ell_1, \ldots, \ell_n]$. Setting $p = [(\ell_1, \ldots, \ell_n)]$, we have $J \subseteq \mathfrak{m}_p^d$. Conversely, suppose $p \in \mathbb{P}^n$ such that $J \subseteq \mathfrak{m}_p^d$ and change coordinates so that $\mathfrak{m}_p = (x_1, \ldots, x_n)$. In this case, no monomial summand of the f_i involves x_0 , so J is extended from $k[x_1, \ldots, x_n]$.

Lemma 3.3. Let k be an algebraically-closed field, $R = k[x_0, ..., x_n]$, and $J \subseteq R$ a nonzero ideal generated by d-forms $f_1, ..., f_r$. Suppose ess(J) = n + 1. Then for general $H \in (\mathbb{P}^n)^{\vee}$, we have $ess(J|_H) = n$.

Proof. Set $Z = \text{Proj}(R/J) \subseteq \mathbb{P}^n$. We define an incidence correspondence as follows:

$$B = \{(z, H) \in Z \times (\mathbb{P}^n)^{\vee} : z \in H, f_i|_H \in \mathfrak{m}_z^d \text{ for all } 1 \le i \le r\}.$$

Let $p: B \to Z, q: B \to (\mathbb{P}^n)^\vee$ be the projections. Fix $z \in Z$ and change coordinates so that $z = [0:\dots:0:1]$. Write $f_i =: g_i + x_n h_i$ for $g_i \in \mathfrak{m}_z^d, h_i \in \mathfrak{m}^{d-1}$. Let $(z,H) \in B_z$ where $H = V(\ell)$. Then there exist $g_i' \in \mathfrak{m}_z^d, h_i' \in \mathfrak{m}^{d-1}$ such that $g_i + x_n h_i = g_i' + \ell h_i'$. Write $h_i' =: g_i'' + x_n h_i''$, where $g_i'' \in \mathfrak{m}_z^{d-1}$. Then $x_n(h_i - \ell h_i'') = g_i' + \ell g_i'' - g_i \in \mathfrak{m}_z^d$, so $h_i - \ell h_i'' = 0$. In particular, $\ell \mid h_i$. It follows that $B_z = \{(z, V(\ell): \ell \mid h_i \text{ for all } 1 \leq i \leq r\}$. By assumption, $\operatorname{ess}(J) = n + 1$. Since $\operatorname{ess}(J) = n + 1$, by Lemma 3.2 we have $h_i \neq 0$ for some i. As h_i has at most d-1 linear factors, we must have $|B_z| \leq d$.

By the previous paragraph, every closed fiber B_z is zero-dimensional, so dim $B \leq \dim Z$. Consequently, dim $q(B) \leq \dim B \leq \dim Z < n$, so q(B) is a proper closed subset of $(\mathbb{P}^n)^\vee$, and so for general $H \in (\mathbb{P}^n)^\vee$, there is no $z \in Z$ such that $(z, H) \in B$. Consequently, there is no $z \in Z \cap H$ such that $f_i \in \mathfrak{m}_z^d|_H$ for all i, so another application of Lemma 3.2 gives $\operatorname{ess}(J|_H) = n$.

The following proposition describes the behavior of essential codimension under restriction to a general linear subspace through the origin.

Proposition 3.4. Let k be an algebraically-closed field, $R = k[x_0, \ldots, x_n]$, and $J \subseteq R$ a homogeneous ideal. Set r = height(J). Let $L = (\ell_{r+1}, \ldots, \ell_n)$, where the ℓ_i are chosen generally. For $r \leq t \leq n$, set $L_t = (\ell_{t+1}, \ldots, \ell_n)$ and $J_t = \frac{J+L_t}{L_t}$. Then for all $r \leq t \leq n$, we have $ess(J_t) = \max(t+1, ess(J))$.

Proof. By induction, it suffices to consider the case t = n - 1. The case $\operatorname{ess}(J) = n + 1$ is covered by Lemma 3.3; it remains to show that $\operatorname{ess}(J_{n-1}) = \operatorname{ess}(J)$ provided $\operatorname{ess}(J) \leq n$. Set $s = \operatorname{ess}(J)$ and change coordinates so that J is extended from an ideal $I \subseteq k[x_0, \ldots, x_{s-1}]$. Suppose $s \leq n$. Let $I' = Ik[x_0, \ldots, x_{n-1}]$. By Lemma 2.18, we have $\operatorname{ess}(I') = \operatorname{ess}(I) = \operatorname{ess}(J)$. The isomorphism $k[x_0, \ldots, x_n]/(\ell_n) \cong k[x_0, \ldots, x_{n-1}]$ identifies J_{n-1} with I', so $\operatorname{ess}(J_{n-1}) = \operatorname{ess}(I') = \operatorname{ess}(J)$. \square

3.2. An Application of Grünbaum's Inequality.

Definition 3.5. Let $K \subseteq \mathbb{R}^n$ be a compact set with vol(K) > 0. The *centroid* c of K is the arithmetic mean of the points of K, that is, we have

$$c = \left(\int_{y \in K} dy\right)^{-1} \int_{y \in K} y dy.$$

We first recall Grünbaum's inequality, for which we state an equivalent version below.

Theorem 3.6 ([9], Theorem 2). Let $K \subseteq \mathbb{R}^n$ be a convex body and let c denote the centroid of K. Let H^+ be a half-space whose boundary hyperplane H contains c. Then

$$\operatorname{vol}(H^+ \cap K) \le \left(1 - \left(\frac{n}{n+1}\right)^n\right) \operatorname{vol}(K).$$

Definition 3.7. We let \mathcal{M}_n denote the quantity $\left(1-\left(\frac{n}{n+1}\right)^n\right)$ from the theorem.

For our purposes, we must characterize the equality case of Theorem 3.6.

Proposition 3.8. Suppose H^+ , H, K are as in Theorem 3.6, with vol(K) > 0 and $vol(H^+ \cap K) = \mathcal{M}_n vol(K)$. Let H denote the boundary hyperplane of H^+ . Then there exists a convex body $K' \subseteq H^+ \cap K$ and a point $q \in K \setminus H^+$ such that K' is contained in a hyperplane parallel to H and $K = conv(K' \cup \{q\})$.

Proof. Follows from [20], Corollary 8.

Definition 3.9. Let $\pi_n : \mathbb{R}^{n+1} \to \mathbb{R}^n$ denote the projection onto the first n coordinates and let $T_n := \pi_n(\Delta_n)$.

Lemma 3.10. Let $T_n := \pi_n(\Delta_n)$. Let $z_n = (\frac{1}{n+1}, \dots, \frac{1}{n+1})$ denote the centroid of T_n . Let H^+ be a half-space whose boundary hyperplane H contains z_n . Then

$$\operatorname{vol}(H^+ \cap T_n) \leq \frac{\mathcal{M}_n}{n!}$$

with equality if and only if H is parallel to a facet F of T_n with $F \subseteq H^+$.

Proof. If K' is an n-1-dimensional convex set and q a point not contained in the hyperplane supporting K' such that $\operatorname{conv}(K' \cup \{q\})$ is a polytope, then K' is a facet of $\operatorname{conv}(K' \cup \{q\})$. The result therefore follows from Proposition 3.8.

We recall the following standard fact from convex analysis:

Lemma 3.11 ([21], Corollary 11.6.1). Let $K \subseteq \mathbb{R}^n$ be a convex set and $x \in \partial K$. Then there exists a half-space H^+ such that $K \subseteq H^+$ and such that $x \in \partial H^+$.

Lemma 3.12. Let $P \subseteq T_n$ be a closed convex set with $z_n \notin intP$. Then $vol(P) \leq \mathcal{M}_n/n!$ with equality if and only if P is the intersection of T_n with a half-space satisfying the conditions of Lemma 3.10.

Proof. If $z_n \notin \partial P$, then for $0 < \varepsilon \le \operatorname{dist}(P, z_n)$, the set $\{x \in T_n : \operatorname{dist}(x, P) < \varepsilon\}$ is a strictly larger convex set which does not contain z_n in its interior. We may therefore assume $z_n \in \partial P$. By Lemma 3.11, we may replace P by $H^+ \cap T_n$, where H^+ is the half-space containing P with $z_n \in \partial H^+$. In this case, the result is immediate from Lemma 3.10.

3.3. **Proof of Theorem A.** To start, we recall a theorem of Rees.

Theorem 3.13 ([16], Proposition 11.2.1, Theorem 11.3.1). Let (R, \mathfrak{m}) be a formally equidimensional local ring and $I \subseteq J$ two \mathfrak{m} -primary ideals. Then e(I) = I(J) if and only if $\overline{I} = \overline{J}$.

Moreover, the conclusion of Theorem 3.13 holds when R is a polynomial ring and I, J two \mathfrak{m} -primary ideals. As a consequence, we may restate the conclusion of Theorem A in terms of essential dimension.

Lemma 3.14. Let $R = k[x_0, ..., x_n]$ and $I \subseteq R$ an ideal generated by d-forms. If height(I) = h, then the following are equivalent:

- (i) ess(I) = h
- (ii) $\overline{I} = (x_0, \dots, x_{h-1})^d$ up to change of coordinates.
- (iii) $I \subseteq (x_0, \ldots, x_{h-1})^d$ up to change of coordinates.

Proof.

- (i) \Longrightarrow (ii): Up to change of coordinates, I is extended from an ideal $I' \subseteq k[x_0, \ldots, x_{h-1}] =: R'$. By flatness of $R' \hookrightarrow R$, we have height(I) = h. There exists an ideal $J' \subseteq I'$ generated by a subset of the generators of I' such that J' is a (d, \ldots, d) -complete intersection of height h. Let \mathfrak{m}' denote the homogeneous maximal ideal of R'. We have $e(J') = d^h = e((x_0, \ldots, x_{h-1})^d)$, so $\overline{J'} = \overline{(\mathfrak{m}')^d}$ by Theorem 3.13. As $(\mathfrak{m}')^d R$ is integrally closed and $I \subseteq (\mathfrak{m}')^d R$, we conclude $\overline{I} = (\mathfrak{m}')^d R$.
- (ii) \Longrightarrow (iii): This follows from the containment $I \subseteq \overline{I}$.
- (iii) \Longrightarrow (i): This follows from the argument of Lemma 3.2.

We state the main technical lemma of this section.

Lemma 3.15. Let k be an algebraically-closed field of characteristic p > 0 and let $R = k[x_0, \ldots, x_n]$. Let $I = (f_1, \ldots, f_n) \subseteq R$ denote a complete intersection ideal generated by d-forms. Then $\operatorname{fpt}(I) \ge n/d$, with equality if and only if $\operatorname{ess}(I) = n$.

We begin with a computation of the Hilbert series of R/I^s .

Lemma 3.16. Let I, R be as in Lemma 3.15. For $t \ge (d-1)n + d(s-1)$, we have $H_R(R/I^s, t) = \binom{n+s-1}{n}d^n$. In particular, this holds for $t \ge d(s+n)$.

Proof. We define

$$\mathcal{L}_{n,s} := \{(a_1, \dots, a_n) : a_i \ge 0, a_1 + \dots + a_n \le s - 1\}.$$

By [10], Corollary 2.3, we have

(1)
$$H_R(R/I^s, t) = \sum_{(a_1, \dots, a_r) \in \mathcal{L}_{n,s}} H_R(R/I, t - d(a_1 + \dots + a_n)).$$

The Hilbert series of R/I is given by

(2)
$$\sum_{i>0} H_R(R/I,i)t^i = \frac{(1-t^d)^n}{(1-t)^{n+1}} = (1+t+\cdots+t^{d-1})^n(1+t+t^2+t^3+\cdots),$$

hence $H_R(R/I,t)=d^n$ for $t \geq (d-1)n$. By Equations (1) and (2), for $t \geq (d-1)n+d(s-1)$ we have

$$H_R(R/I^s,t) = |\mathcal{L}_{n,s}|d^n = \binom{n+s-1}{n}d^n.$$

Lemma 3.17. Let $\mathfrak{a} \subseteq R$ be a monomial ideal containing a monomial m of degree t. For any t' > t, if $\frac{t'}{n+1} \vec{1} \in \gamma(\mathfrak{a}, t')$, then $\operatorname{fpt}(\mathfrak{a}) > \frac{n+1}{t'}$.

Proof. Set $y = \log(m)$. By convexity of $\Gamma(\mathfrak{a})$, we have $\lambda y + (1 - \lambda)\gamma(\mathfrak{a}, t') \subseteq \Gamma(\mathfrak{a})$ for all $\lambda \in [0, 1]$. Taking $0 < \lambda \ll 1$, we obtain $\frac{\lambda t + (1 - \lambda)t'}{n + 1}\vec{1} \in \Gamma(\mathfrak{a})$, which implies $\operatorname{fpt}(\mathfrak{a}) \geq \frac{n + 1}{\lambda t + (1 - \lambda)t'} > \frac{n + 1}{t'}$ by Proposition 2.14.

Lastly, we need a result relating volume and integer point counts for convex bodies.

Lemma 3.18. Let Δ_n, T_n, π_n be as in Definitions 2.10 and 3.9. For $t \in \mathbb{Z}^+$ and $P \subseteq t\Delta_n$ a convex set, we have

(3)
$$|\operatorname{vol}_n(\pi_n(P)) - \#(P \cap \mathbb{Z}^{n+1})| \le \sum_{i=1}^{n-1} \frac{t^i}{i!}.$$

Proof. Since $t\Delta_n$ is contained in the affine space $x_0 + \cdots + x_n = t$ and $t \in \mathbb{Z}^+$, π_n induces a bijection between $t\Delta_n \cap \mathbb{Z}^{n+1}$ and $T_n \cap \mathbb{Z}^n$, so Equation (3) can be interpreted as a statement relating the volume and integer point count of $\pi_n(P)$. For each P' occurring as an i-dimensional projection of $\pi_n(P)$ onto an i-dimensional coordinate axis, $\frac{1}{t}P'$ is contained in an i-dimensional simplex, so we have $\operatorname{vol}_i(P') \leq \frac{t^i}{i!}$. The result then follows from [2].

We now prove Lemma 3.15.

Proof. Let \mathfrak{p} be a minimal prime over I. Since $k = \overline{k}$ and I is homogeneous, we may change coordinates so that $\mathfrak{p} = (x_1, \ldots, x_n)$. Let > denote the lexicographic order, and define the graded system of ideals $\mathfrak{a}_{\bullet} = \{ \text{in}_{>}(I^{nm}) \}_m$. Since \mathfrak{p}^r is a monomial ideal for all $r \geq 0$ and $I^r \subseteq \mathfrak{p}^r$, we have $\mathfrak{a}_m \subseteq \mathfrak{p}^{nm}$ for all $m \geq 0$. Since \mathfrak{a}_{\bullet} is graded, we have for any $t \in \mathbb{Z}^+$

$$[\mathfrak{a}_{2^m}]_{2^mt}[\mathfrak{a}_{2^m}]_{2^mt}\subseteq [\mathfrak{a}_{2^m}\mathfrak{a}_{2^m}]_{2^{m+1}t}\subseteq [\mathfrak{a}_{2^{m+1}}]_{2^{m+1}t}.$$

It follows that $\{\frac{1}{2^m}\gamma(\mathfrak{a}_{2^m},2^mt)\}_m$ is an ascending chain of convex subsets of H_t . We then set t=d(n+1) and let \mathcal{P} denote the ascending union $\bigcup_{m\geq 1}\gamma(\mathfrak{a}_{2^m},2^md(n+1))$. If $d\vec{1}\in\mathcal{P}$, there exists some m such that $d\vec{1}\in\gamma(\mathfrak{a}_{2^m},2^md(n+1))$. By Lemma 3.17, we have $\operatorname{fpt}(\mathfrak{a}_{2^m})>\frac{n+1}{2^md(n+1)}=\frac{1}{2^md}$, so $\operatorname{fpt}(I)>n/d$.

Conversely, suppose $d\vec{1} \notin \mathcal{P}$. Then for all m, we have $d\vec{1} \notin \frac{1}{2^m} \gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))$. By Lemma 3.12, we have

(4)
$$\operatorname{vol}(\mathcal{P}) = \lim_{m \to \infty} \operatorname{vol}\left(\frac{1}{2^m} \gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))\right) \le (d(n+1))^n \frac{\mathcal{M}_n}{n!}.$$

We now derive a lower bound for vol(P). First, by Lemma 3.16, we have

$$\begin{split} \#\mathbb{Z}^{n+1} \cap (\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))) &\geq H_R(\mathfrak{a}_{2^m}, 2^m d(n+1)) \\ &= H_R(I^{2^m n}, 2^m d(n+1)) \\ &= \binom{n+2^m d(n+1)}{n} - \binom{n+2^m n-1}{n} d^n \end{split}$$

provided $2^m d(n+1) \ge d(2^m n + n)$, which is satisfied for all $m \ge \log_2 n$. Using the approximation $\binom{a+b}{b} = \frac{a^b}{b!} + O_b(a^{b-1})$, we have

(5)
$$\#\mathbb{Z}^{n+1} \cap (\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))) \ge \frac{(2^m d)^n}{n!} ((n+1)^n - n^n) + O(2^{m(n-1)})$$

Combining the bounds Lemma 3.18 and eq. (5), we have

$$\operatorname{vol}(\mathcal{P}) = \lim_{m \to \infty} \operatorname{vol}\left(\frac{1}{2^m} \gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))\right) = \lim_{m \to \infty} \frac{1}{2^{mn}} \operatorname{vol}(\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1)))$$

$$\geq \lim_{m \to \infty} \frac{1}{2^{mn}} \left(\#(\mathbb{Z}^{n+1} \cap \gamma(\mathfrak{a}_{2^m}, 2^m d(n+1)) - \sum_{i=1}^{n-1} \frac{(2^m d(n+1))^i}{i!}\right)$$

$$\geq \lim_{m \to \infty} \frac{1}{2^{mn}} \left(\frac{(2^m d)^n}{n!} \left((n+1)^n - n^n\right) + O(2^{m(n-1)})\right)$$

$$= (d(n+1))^n \frac{\mathcal{M}_n}{n!}.$$

It follows that $\operatorname{vol}(\mathcal{P}) = \operatorname{vol}(\overline{\mathcal{P}}) = (d(n+1))^n \frac{\mathcal{M}_n}{n!}$, so by Lemma 3.10, we have $\overline{\mathcal{P}} = H^+ \cap (d(n+1))\Delta_n$. Moreover, the boundary hyperplane H of H^+ is parallel to a facet F of $(d(n+1))\Delta_n$ with $F \subseteq H^+$ and $d(n+1)\eta_n \in H$.

For $\alpha \in \mathbb{R}$, define $D_{t,\beta} = \{(a_0, \ldots, a_n) \in t\Delta_n : a_0 \leq \beta\}$. Since $\mathfrak{a}_m \subseteq \mathfrak{p}^{mn}$, for any monomial $x_0^{a_0} \ldots x_n^{a_n} \in (\mathfrak{a}_m)_t$, we have $a_1 + \cdots + a_n \geq mn$ and hence $a_0 \leq t - mn$. In particular, for all $m \geq 0$ we have

$$\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1)) \subseteq D_{2^m d(n+1), 2^m n(d+1) - 2^m n}.$$

As a consequence, we conclude $\mathcal{P} \subseteq D_{d(n+1),d(n+1)-n}$. As $F \subseteq \mathcal{P}$, the only possible choice for F is the facet $\{a_0 = 0\} \subseteq d(n+1)\Delta_n$. We conclude that $\overline{\mathcal{P}} = D_{d(n+1),d}$. We then have

$$\Gamma(\mathfrak{a}_1, d(n+1)) \subseteq \overline{\mathcal{P}} = D_{d(n+1),d} = \Gamma(\mathfrak{p}^{nd}, d(n+1)),$$

so $[\mathfrak{a}_1]_{d(n+1)} \subseteq [\mathfrak{p}^{nd}]_{n(d+1)}$. For each generator f_i of I, we have $x_0^d \operatorname{in}_{>}(f_i^n) \in [\mathfrak{a}_1]_{d(n+1)} \subseteq [\mathfrak{p}^{nd}]_{n(d+1)}$, so $x_0 \nmid \operatorname{in}_{>}(f_i^n)$ for all i. As $\operatorname{in}_{>}(f_i^n) = \operatorname{in}_{>}(f_i)^n$, we deduce that $I \subseteq \mathfrak{p}^d$. By Lemma 3.14, we have $\operatorname{ess}(I) = n$.

We are now able to prove Theorem A. By Lemma 3.14, it suffices to prove the following.

Theorem (A). Let k be an algebraically-closed field of characteristic p > 0. Let I be a homogeneous ideal in $k[x_0, \ldots, x_n]$ generated by d-forms and set h = height(I). Then fpt(I) = h/d if and only if ess(I) = h.

Proof. Let k be an algebraically-closed field and $R = k[x_0, \ldots, x_n]$. Let $I \subseteq R$ be an ideal generated by d-forms, and suppose that height(I) = n, fpt(I) = n/d. If f_1, \ldots, f_n are n general d-forms in I, then $J = (f_1, \ldots, f_n)$ is a complete intersection. By Proposition 1.1 and Proposition 2.5 (i), we have

$$n/d \le \operatorname{fpt}(J) \le \operatorname{fpt}(I) = n/d.$$

By Lemmas 3.14 and 3.15, we may change coordinates on R such that $\overline{J} = (x_1, \dots, x_n)^d$. Then we have $(x_1, \dots, x_n)^d \subseteq \overline{I}$. Let > denote the lexicographic order, and let g be a d-form in \overline{I} . Write $\operatorname{in}_>(g) = x_0^{a_0} \cdots x_n^{a_n}$, and note that $(x_1, \dots, x_n) \subseteq \operatorname{in}_>(\overline{I})$. Set $a = \max_i a_i$. Then

$$g^{\lfloor (p^e-1)/a\rfloor} \prod_{i=1}^n (x_i^d)^{\lfloor ((p^e-1)-a_i\lfloor (p^e-1)/a\rfloor)/d\rfloor} \notin \mathfrak{m}^{[p^e]},$$

so we have

$$\lim_{e \to \infty} \frac{\nu_{\text{in} > (\overline{I})}}{p^e} \ge \lim_{e \to \infty} \frac{1}{p^e} \left(\left\lfloor \frac{p^e - 1}{a} \right\rfloor + \sum_{i=1}^n \left\lfloor \frac{p^e - 1}{d} - \frac{a_i \lfloor (p^e - 1)/a \rfloor}{d} \right\rfloor \right) = \frac{1}{a} + \sum_{i=1}^n \left(\frac{1}{d} - \frac{a_i}{ad} \right) = \frac{n}{d} + \frac{a_0}{ad}.$$

Consequently, by Propositions 2.5 and 2.6 we have

$$\frac{n}{d} = \operatorname{fpt}(I) = \operatorname{fpt}(\overline{I}) \ge \operatorname{fpt}(\operatorname{in}_{>}(\overline{I})) \ge \operatorname{fpt}((x_1, \dots, x_n)^d + (x_0^{a_1} \cdots x_n^{a_n})) = \frac{n}{d} + \frac{a_0}{ad},$$

so we have $a_0 = 0$, hence $\text{in}_{>}(g) \in (x_1, \dots, x_n)^d$. As > is the lexicographic order, it follows that $g \in (x_1, \dots, x_n)^d$. As g was arbitrary, we conclude that $\overline{I} = (x_1, \dots, x_n)^d$.

Next, we consider the case that height $I \neq n$. If height I = n + 1, then $\overline{I} = (x_0, \dots, x_n)^{n+1}$ by Theorem 3.13. Otherwise, suppose height $I = h \leq n-1$. Let L be an ideal generated by n-h linear forms. Then $\frac{h}{d} \leq \operatorname{fpt}(\frac{I+L}{L}) \leq \frac{h}{d}$, so by Lemma 3.15, we have $\operatorname{ess}(\frac{I+L}{L}) = h$. By Proposition 3.4, the same holds for I.

4. A Bertini Theorem for F-Purity of Pairs

In this section, we prove Theorem C.

Lemma 4.1 ([1], Lemma 3.2). Let $R := k[x_0, ..., x_n], \mathfrak{m} := (x_0, ..., x_n)$. For $e, t \in \mathbb{Z}^+$, we have

$$(\mathfrak{m}^{[p^e]}:\mathfrak{m}^t) = \begin{cases} R & t \geq (n+1)p^e - n \\ \mathfrak{m}^{[p^e]} + \mathfrak{m}^{(n+1)p^e - n - t} & t < np^e - n + 1 \end{cases}$$

Lemma 4.2. Let k be a field of characteristic p > 0, let $R = k[x_1, \ldots, x_n]$, and $I \subseteq \mathfrak{m}$ a homogeneous ideal. For $H = V(\ell) \in (\mathbb{P}^n)^\vee$, we let $I|_H$ denote the image of I in $R/\ell R$. In this case, we have

(6)
$$\nu_{I|_H}(p^e) \le \max\{r : I^r \not\subseteq \mathfrak{m}^{[p^e]} + \mathfrak{m}^{n(p^e-1)+1}\},$$

Conversely, if $|k| \geq p^e$, then there exists $H \in (\mathbb{P}^n)^{\vee}(k)$ such that

(7)
$$\nu_{I|_H}(p^e) \ge \max\{r : I^r \not\subseteq \mathfrak{m}^{[p^e]} + \mathfrak{m}^{n(p^e-1)-(n-1)(p^{e-1})+1}\}.$$

If k is infinite, then Equation (7) holds for general $H \in (\mathbb{P}^n)^{\vee}$.

Proof. Let $\mathfrak{a}_e := \mathfrak{m}^{[p^e]} + \mathfrak{m}^{n(p^e-1)+1}$, $d_e = n(p^e-1) - (n-1)(p^{e-1})$, and $\mathfrak{b}_e := \mathfrak{m}^{[p^e]} + \mathfrak{m}^{d_e+1}$. We have $\mathfrak{a}_e|_H = \mathfrak{m}^{[p^e]}|_H$, which proves the bound 6. For Equation (7), suppose $f \in I^r \setminus \mathfrak{b}_e$ is a homogeneous element which necessarily has degree at most d_e . By Lemma 4.1, we have $f \notin (\mathfrak{m}^{[p^e]} : \mathfrak{m}^{d_e-\deg(f)})$. Multiplying f by a generator of $\mathfrak{m}^{d_e-\deg(f)}$, we may assume $f \notin \mathfrak{b}_e$ and $\deg f = d_e$. Write

$$f = \sum_{a_0 + \dots + a_n = d_e} c_{a_0, \dots, a_n} x_0^{a_0} \cdots x_n^{a_n}.$$

For $\lambda \in k^n$, let H_{λ} denote the hyperplane cut out by $x_0 = \lambda_1 x_1 + \dots + \lambda_n x_n$. For $b_1, \dots, b_n \in \mathbb{Z}^{\geq 0}$ such that $b_1 + \dots + b_n = d_e$, define

$$P_{b_1,\dots,b_n}^f(\lambda) := \sum_{a_0=0}^{d_e} \left(\sum_{\substack{a_i \le b_i \ \forall \ 1 \le i \le n \\ a_1+\dots+a_n=d_e-a_0}} c_{a_0,\dots,a_n} \binom{a_0}{b_1-a_1,\dots,b_n-a_n} \lambda_1^{b_1-a_1} \cdots \lambda_n^{b_n-a_n} \right).$$

Then we have

$$f|_{H_{\lambda}} = \sum_{a_0 + \dots + a_n = d_e} c_{a_0, \dots, a_n} x_1^{a_1} \cdots x_n^{a_n} (\lambda_1 x_1 + \dots \lambda_n x_n)^{a_0}$$
$$= \sum_{b_1 + \dots + b_n = d_e} x_1^{b_1} \dots x_n^{b_n} P_{b_1, \dots, b_n}^f(\lambda).$$

For any H_{λ} , we have that $f|_{H_{\lambda}} \notin \mathfrak{m}^{[p^e]}$ if and only if there exist $b_1, \ldots, b_n \leq p^e - 1$ for which $P^f_{b_1, \ldots, b_n}(\lambda) \neq 0$. We first prove that there exist $b_1, \ldots, b_n \leq p^e - 1$ for which $P^f_{b_1, \ldots, b_n}(\lambda)$ is a non-constant polynomial in λ . To this end, it suffices to produce $a_0, \ldots, a_n, b_1, \ldots, b_n$ such that

- (i) $a_0 + \dots + a_n = d_e$;
- (ii) $c_{a_0,...,a_n} \neq 0$;
- (iii) $b_1 + \dots + b_n = d_e$;
- (iv) $a_i \leq b_i \leq p^e 1$ for all $1 \leq i \leq n$;
- (v) We have

$$\binom{a_0}{b_1 - a_1, \dots, b_n - a_n} \not\equiv 0 \mod p.$$

By assumption that $f \notin \mathfrak{m}^{[p^e]}$, it is possible to choose a_0, \ldots, a_n such that $a_0 + \cdots + a_n = d_e, a_0, \ldots, a_n \leq p^e - 1$, and $c_{a_0, \ldots, a_n} \neq 0$. We will prove, by induction on the *p*-ary digits of a_0 , that there exist b_1, \ldots, b_n satisfying (iii)-(v). The base case, when $a_0 = 0$, is obvious. Write $a_0 = \alpha_0 + \alpha_1 p + \cdots + \alpha_{e-1} p^{e-1}$ and suppose $\alpha_j \neq 0$.

As $a_1 + \cdots + a_n = d_e - a_0$, we have $\min_i a_i \leq \frac{d_e - a_0}{n}$. As a consequence, we have

$$\max_{1 \le i \le n} (p^e - 1) - a_i \ge (p^e - 1) - \frac{d_e - a_0}{n} \ge (p^e - 1) - \frac{d_e - p^j}{n} = \frac{(n - 1)(p^{e - 1})}{n} + \frac{p^j}{n} \ge p^j.$$

It follows that there exists some $1 \le i \le n$ with $a_i + p^j \le p^e - 1$. We apply the induction hypothesis to produce integers b_1, \ldots, b_n satisfying (iii)-(v) with respect to $(a_0 - p^j, a_1, \ldots, a_i + p^j, \ldots, a_n)$. Since

$$\begin{pmatrix} a_0 - p_j \\ b_1 - a_1, \dots, b_i - a_i - p_j, \dots, b_n - a_n \end{pmatrix} \not\equiv 0 \mod p,$$

it follows by Lucas's theorem that we can perform the addition

$$(b_1 - a_1) + \dots + (b_i - a_i - p^j) + \dots + (b_n - a_n) = a_0 - p^j$$

in base p without having to carry a digit. Consequently, the same is true for the addition

$$(b_1 - a_1) + \dots + (b_i - a_i) + \dots + (b_n - a_n) = a_0,$$

so b_1, \ldots, b_n satisfy conditions (iii)-(v) for the original tuple (a_1, \ldots, a_n) .

For b_1, \ldots, b_n as above, $P^f_{b_1, \ldots, b_n}(\lambda)$ is a nonzero polynomial of total degree $a_n \leq p^e - 1$ in the variables $\lambda_1, \ldots, \lambda_n$. By the Schwartz-Zippel lemma ([22], Corollary 1), there exist $\lambda_1, \ldots, \lambda_n \in k$ for which $P^f_{b_1, \ldots, b_n}(\lambda_1, \ldots, \lambda_n) \neq 0$. If k is infinite, then $P^f_{b_1, \ldots, b_n}(\lambda) \neq 0$ for general $\lambda \in k^n$.

As a consequence, we have the following.

Theorem (C). Let k be an infinite field of characteristic p > 0. Let $R = k[x_0, \ldots, x_n]$. Let $I \subseteq R$ be an ideal generated by forms of degree at most d. Let $H \in (\mathbb{P}^n)^{\vee}$ be a general hyperplane through the origin. Then for all $0 \le t < \frac{n}{d} - \frac{n-1}{pd}$, the pair (R, I^t) is sharply F-split if and only if $(H, (I|_H)^t)$ is sharply F-split.

Proof. The implication $(H,(I|H)^t)$ sharply F-split $\Longrightarrow (R,I^t)$ sharply F-split is well-known and additionally is immediate from Equation (6). Conversely, suppose (R,I^t) is sharply F-split and $t < \frac{n}{d} - \frac{n-1}{pd}$. Then there exists $M \in \mathbb{Z}^+$ such that for all $e \in \mathbb{Z}^+$, $M \mid e$, we have $I^{\lceil t(p^e-1) \rceil} \not\subseteq \mathfrak{m}^{\lceil p^e \rceil}$. Since $t < \frac{n}{d} - \frac{n-1}{pd}$, we may choose $e \gg 0$ divisible by M such that

(8)
$$\lceil t(p^e - 1) \rceil d \le n(p^e - 1) - (n - 1)(p^{e-1}).$$

By assumption we have $I^{\lceil t(p^e-1) \rceil} \not\subseteq \mathfrak{m}^{[p^e]}$, and by Equation (8) none of the generators of $I^{\lceil t(p^e-1) \rceil}$ are contained in $\mathfrak{m}^{n(p^e-1)-(n-1)(p^{e-1})+1}$. By Equation (7), we conclude $I_H^{\lceil t(p^e-1) \rceil} \not\subseteq \mathfrak{m}^{[p^e]}|_H$, so $(H, (I|_H)^t)$ is not sharply F-split.

In terms of the F-pure threshold, Theorem C says the following.

Corollary 4.3. Let R, I, H be as in Theorem C. Then

$$\min\left(\frac{n}{d} - \frac{n-1}{pd}, \operatorname{fpt}(I)\right) \le \operatorname{fpt}(I|_H).$$

Proof. By Equation (7), we have

$$fpt(I|_{H}) \ge \lim_{e \to \infty} p^{-e} \sup\{r : I^{r} \not\subseteq \mathfrak{m}^{[p^{e}]} + \mathfrak{m}^{n(p^{e}-1)-(n-1)p^{e-1}+1}\}
= \lim_{e \to \infty} p^{-e} \min\left(\nu_{I}(p^{e}), \left\lfloor \frac{n(p^{e}-1)-(n-1)p^{e-1}+1}{d} \right\rfloor \right) = \min\left(fpt(I), \frac{n}{d} - \frac{n-1}{pd}\right).$$

Example 4.4. In Theorem C, our bound on t is optimal. If char k=p and $R=k[x_0,\ldots,x_n]$, then we may take $f=x_0(x_1\cdots x_n)^{p-1}$ and $t=\frac{n}{n(p-1)+1}-\frac{n-1}{p(n(p-1)+1)}=\frac{1}{p}$. Then $\operatorname{fpt}(R,f)=\frac{1}{p-1}$, so (R,f^t) is sharply F-split. For any hyperplane $H\subseteq R$ we have $f|_H\in\mathfrak{m}|_H^{[p]}$, so $\operatorname{fpt}(f|_H)\leq t$. Since p divides the denominator of t, we have that $(H,f^t|_H)$ is not sharply F-split.

Finally, we note that an analog of Corollary 4.3 holds for the log canonical threshold.

Corollary 4.5. Let k be a characteristic zero field and let R, I, H be as in Theorem C. Then

$$\min\left(\frac{n}{d}, \operatorname{lct}(I)\right) \le \operatorname{lct}(I|_{H}).$$

In particular, if I is generated by d-forms, then the above inequality is an equality.

Proof. Let $\{I_p\}_p$ be a family of positive-characteristic models for I. Using [19], one may prove approximate $\operatorname{fpt}(I_p)$ by $\nu_{I_p}(p)$ to prove a quantitative version of Corollary 4.3 for finite fields. More precisely, one obtains that for each p, there exists $H_p \in (\mathbb{P}^n)^{\vee}(k_p)$ such that

$$\min\left(\operatorname{fpt}(I), \frac{n(p-1) - (n-1) + 1}{pd}\right) + O\left(\frac{1}{p}\right) \le \operatorname{fpt}(I_p|_{H_p}),$$

where the implicit constant depends on the number of generators of I. By the ACC for log canonical thresholds [8], there exists a hyperplane $H \in (\mathbb{P}^n)^{\vee}(k)$ such that $lct(I|_H) \geq \min(lct(I), \frac{n}{d})$. By semicontinuity of the log canonical threshold [4], the desired bound holds for general $H \in (\mathbb{P}^n)^{\vee}(k)$.

5. The Test Ideal at the Threshold

In the introduction, we claimed that the best-known result in characteristic zero (Theorem 1.2) is stronger than the previous best-known result in positive characteristic (Proposition 1.1). Indeed, Theorem 1.2 shows that analogs of Proposition 1.1 and theorem A holds in characteristic zero.

Proposition 5.1. Let k be an algebraically-closed field of characteristic zero. Let I be a homogeneous ideal in $k[x_0, \ldots, x_n]$ generated by d-forms. If h is the height of I, then $\operatorname{fpt}(I) \geq h/d$ with equality if and only if $\overline{I} = (x_0, \ldots, x_{h-1})^d$ up to change of coordinates.

Proof. Since $(R, (1)^t)$ is klt for all t > 0, the non-klt locus Z of $(R, I^{lct(I)})$ is contained in V(I). Consequently, by Theorem 1.2 we have

$$lct(I) \ge \frac{\operatorname{codim} Z}{d} \ge \frac{\operatorname{height} I}{d} = \frac{h}{d}.$$

Write $I=(f_1,\ldots,f_r)$. If $\mathrm{lct}=\frac{h}{d}$, then $\mathrm{codim}(Z)=h$ and $\mathrm{lct}(I)=\frac{\mathrm{codim}(Z)}{d}$, so there exist independent linear forms $\ell_1,\ldots,\ell_h\in R$ such that $f_i\in k[\ell_1,\ldots,\ell_h]$. Changing coordinates, we may assume $\ell_i=x_{i-1}$ for $1\leq i\leq h$. The result then follows from Lemma 3.14.

By [12], the correct positive-characteristic analog of Theorem 1.2 considers strong F-regularity and the F-pure threshold. We direct the reader to [11] for background on the test ideal $\tau(R, \mathfrak{a}^t)$, which cuts out the non-strongly F-regular locus of the pair (R, \mathfrak{a}^t) . With this in mind, we are now able to give an example of the failure of Theorem 1.2 in positive characteristic.

Example 5.2. Suppose $p \equiv 2 \mod 3$. Let $R = \mathbb{F}_p[x,y,z]$ and $f = (x^3 + y^3 + z^3)$. By [13, Theorems 3.1 and 3.3], we have $\operatorname{fpt}(f) = 1 - \frac{1}{p}$ and $\tau(R, f^{1-1/p}) = (x, y, z)$. A naive translation of Theorem 1.2 predicts that $\operatorname{fpt}(f) \geq \frac{\operatorname{height}((x,y,z))}{3}$, but this is not the case.

Motivated by the failure of the positive-characteristic analog of Theorem 1.2 in the case that p divides the denominator of fpt(f), we impose the additional condition that the pair $(R, I^{fpt(I)})$ is sharply F-split.

Lemma 5.3. Let k be a field of characteristic p > 0. Let $R = k[x_0, \ldots, x_n]$. Suppose $I \subseteq R$ is generated by homogeneous polynomials of degree d. Suppose $(R, I^{\text{fpt}(I)})$ is sharply F-split and let $h = \text{height}(\tau(R, I^{\text{fpt}(I)}))$. Suppose further that $h \ge n$. Then $\text{fpt}(I) \ge h/d$.

Proof. Define the graded system of ideals \mathfrak{a}_{\bullet} by $\mathfrak{a}_m = I^{\lceil m \operatorname{fpt}(I) \rceil}$. The strongly F-regular loci of $(R, I^{\operatorname{fpt}(I)})$ and $(R, \mathfrak{a}_{\bullet})$ coincide according to [23, Definition 2.11]. Let \mathfrak{p} be a minimal prime over $\tau(R, I^{\operatorname{fpt}(I)})$. As \mathfrak{p} is a homogeneous prime ideal of height n or n+1, we may change coordinates so that $\mathfrak{p} = (x_0, \dots, x_{h-1})$. By [23], Proposition 4.5 and 4.7, we have that \mathfrak{p} is uniformly $(\mathfrak{a}_{\bullet}, F)$ -compatible, so for all $e \geq 0$ we have $\mathfrak{a}_{p^e-1} \subseteq (\mathfrak{p}^{[p^e]} : \mathfrak{p}) = \mathfrak{p}^{[p^e]} + (x_0 \cdots x_{h-1})^{p^e-1}$. By assumption that $(R, I^{\operatorname{fpt}(I)})$ is sharply F-split, there exists M > 0 such that for all $e \geq 0$, $M \mid e$ we have $\mathfrak{a}_{p^e-1} \not\subseteq \mathfrak{m}^{[p^e]}$. Let $M \mid e$, and let f be a generator of \mathfrak{a}_{p^e-1} such that $f \in \mathfrak{p}^{[p^e]} + (x_0 \cdots x_{h-1})^{p^e-1} \setminus \mathfrak{m}^{[p^e]}$. Then $[\operatorname{fpt}(I)(p^e-1)]d = \deg f \geq h(p^e-1)$, so $\operatorname{fpt}(I) \geq \frac{h}{d}$.

In particular, by [14, Theorem 4.1], the hypothesis that $(R, I^{\text{fpt}(I)})$ is sharply F-split is satisfied whenever I is principal and p does not divide the denominator of fpt(I).

Theorem (B). Suppose char k = p > 0 and $R = k[x_0, ..., x_n]$. Suppose that $f \in R$ is homogeneous of degree d, that f is smooth in codimension c, and that p does not divide the denominator of $\operatorname{fpt}(f)$. Further suppose that $c \ge n$ or $p \ge c$. Then $\operatorname{fpt}(f) \ge \min(c/d, 1)$.

Proof. We first base change to the algebraic closure of k; this changes neither the hypotheses nor the conclusion. Assume $\operatorname{fpt}(f) < 1$. We will first demonstrate that $V(\tau(R, f^{\operatorname{fpt}(f)})) \subseteq \operatorname{Sing}(f)$. To see this, suppose $\mathfrak p$ is a nonsingular point of R/fR. Then in particular, $R_{\mathfrak p}/fR_{\mathfrak p}$ is F-split, so $\operatorname{fpt}(R_{\mathfrak p}, fR_{\mathfrak p}) = 1$ and $\tau(R_{\mathfrak p}, f^{\operatorname{fpt}(f)}R_{\mathfrak p}) = R_{\mathfrak p}$. It follows that $\mathfrak p \notin V(\tau(R, f^{\operatorname{fpt}(f)}))$. If $c \in \{n, n+1\}$, by Lemma 5.3 we have $\operatorname{fpt}(f) \geq \operatorname{height}(\tau(R, f^{\operatorname{fpt}(f)}))/d \geq c/d$.

Suppose instead $c \leq n-1$ and $p \geq c$; we'll prove the claim by induction on n+1-c. Suppose for the sake of contradiction $\operatorname{fpt}(f) < c/d$. Let H be a general element of $(\mathbb{P}^n)^{\vee}$. Then $\operatorname{codim}(H,\operatorname{Sing}(f|_H)) = \operatorname{codim}(\operatorname{Spec} R,\operatorname{Sing}(f)) = c$ by Bertini's theorem. As

$$fpt(f) < \frac{c}{d} \le \frac{c+1}{d} - \frac{c}{pd} \le \frac{n}{d} - \frac{c-1}{pd},$$

we have by Corollary 4.3 that $\operatorname{fpt}(f) = \operatorname{fpt}(f|_H)$. In particular, p does not divide the denominator of $\operatorname{fpt}(f)$. By induction, we conclude that $\operatorname{fpt}(f) < c/d \le \operatorname{fpt}(f|_H) = \operatorname{fpt}(f)$, a contradiction. \square

We close this paper with a conjecture.

Conjecture 5.4. Let k be an algebraically-closed field of characteristic p > 0 and set $R = k[x_1, \ldots, x_n]$. Let $I \subseteq R$ be an ideal generated by d-forms. Further suppose that $(R, I^{\text{fpt}(I)})$ is sharply F-split. Letting $e = \text{height}(\tau(R, I^{\text{fpt}(I)}))$, we have

$$fpt(R, I) \ge \frac{e}{d}$$

with equality if and only if ess(I) = e.

REFERENCES 13

References

- [1] Bhargav Bhatt and Anurag K. Singh. "The F-pure threshold of a Calabi-Yau hypersurface". In: Math. Ann. 362.1-2 (2015), pp. 551–567. ISSN: 0025-5831,1432-1807. DOI: 10.1007/s00208-014-1129-0.
- [2] Harold Davenport. "On a principle of Lipschitz". In: *J. London Math. Soc.* 26 (1951), pp. 179–183. ISSN: 0024-6107,1469-7750. DOI: 10.1112/jlms/s1-26.3.179.
- [3] Alessandro De Stefani and Luis Núñez-Betancourt. "F-thresholds of graded rings". In: Nagoya Math. J. 229 (2018), pp. 141–168. ISSN: 0027-7630,2152-6842. DOI: 10.1017/nmj.2016.65.
- [4] Jean-Pierre Demailly and János Kollár. "Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds". In: *Ann. Sci. École Norm. Sup.* (4) 34.4 (2001), pp. 525–556. ISSN: 0012-9593. DOI: 10.1016/S0012-9593(01)01069-2.
- [5] Lawrence Ein and Mircea Mustata. The log canonical threshold of homogeneous affine hypersurfaces. en. arXiv:math/0105113. May 2001. DOI: 10.48550/arXiv.math/0105113.
- [6] Tommaso de Fernex, Lawrence Ein, and Mircea Mustață. "Bounds for log canonical thresholds with applications to birational rigidity". In: *Math. Res. Lett.* 10.2-3 (2003), pp. 219–236. ISSN: 1073-2780. DOI: 10.4310/MRL.2003.v10.n2.a9.
- [7] Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă. "Multiplicities and log canonical threshold". In: J. Algebraic Geom. 13.3 (2004), pp. 603-615. ISSN: 1056-3911,1534-7486. DOI: 10.1090/S1056-3911-04-00346-7.
- [8] Tommaso de Fernex, Lawrence Ein, and Mircea Mustață. "Shokurov's ACC conjecture for log canonical thresholds on smooth varieties". In: *Duke Math. J.* 152.1 (2010), pp. 93–114. ISSN: 0012-7094,1547-7398. DOI: 10.1215/00127094-2010-008.
- [9] Branko Grünbaum. "Partitions of mass-distributions and of convex bodies by hyperplanes". In: *Pacific J. Math.* 10 (1960), pp. 1257–1261. ISSN: 0030-8730,1945-5844.
- [10] Elena Guardo and Adam Van Tuyl. "Powers of complete intersections: graded Betti numbers and applications". In: *Illinois J. Math.* 49.1 (2005), pp. 265–279. ISSN: 0019-2082,1945-6581.
- [11] Nobuo Hara and Shunsuke Takagi. "On a generalization of test ideals". In: *Nagoya Math. J.* 175 (2004), pp. 59–74. ISSN: 0027-7630,2152-6842. DOI: 10.1017/S0027763000008904.
- [12] Nobuo Hara and Ken-Ichi Yoshida. "A generalization of tight closure and multiplier ideals". In: Trans. Amer. Math. Soc. 355.8 (2003), pp. 3143–3174. ISSN: 0002-9947,1088-6850. DOI: 10.1090/S0002-9947-03-03285-9.
- [13] Daniel J. Hernández. "F-invariants of diagonal hypersurfaces". In: Proc. Amer. Math. Soc. 143.1 (2015), pp. 87–104. ISSN: 0002-9939,1088-6826. DOI: 10.1090/S0002-9939-2014-12260-X.
- [14] Daniel J. Hernández. "F-purity of hypersurfaces". In: Math. Res. Lett. 19.2 (2012), pp. 389–401. ISSN: 1073-2780,1945-001X. DOI: 10.4310/MRL.2012.v19.n2.a11.
- [15] Daniel J. Hernández. "F-purity versus log canonicity for polynomials". In: Nagoya Math. J. 224.1 (2016), pp. 10–36. ISSN: 0027-7630,2152-6842. DOI: 10.1017/nmj.2016.14.
- [16] Craig Huneke and Irena Swanson. *Integral closure of ideals, rings, and modules*. Vol. 336. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2006, pp. xiv+431. ISBN: 978-0-521-68860-4; 0-521-68860-4.
- [17] Sarah Mayes. "The limiting shape of the generic initial system of a complete intersection". In: Comm. Algebra 42.5 (2014), pp. 2299–2310. ISSN: 0092-7872,1532-4125. DOI: 10.1080/00927872.2012.758271.
- [18] Mircea Mustață. "IMPANGA lecture notes on log canonical thresholds". In: Contributions to algebraic geometry. EMS Ser. Congr. Rep. Notes by Tomasz Szemberg. Eur. Math. Soc., Zürich, 2012, pp. 407–442. ISBN: 978-3-03719-114-9. DOI: 10.4171/114-1/16.
- [19] Mircea Mustață, Shunsuke Takagi, and Kei-ichi Watanabe. "F-thresholds and Bernstein-Sato polynomials". In: *European Congress of Mathematics*. Eur. Math. Soc., Zürich, 2005, pp. 341–364. ISBN: 3-03719-009-4.
- [20] S. Myroshnychenko, M. Stephen, and N. Zhang. "Grünbaum's inequality for sections". In: *J. Funct. Anal.* 275.9 (2018), pp. 2516–2537. ISSN: 0022-1236,1096-0783. DOI: 10.1016/j.jfa.2018.04.001.
- [21] R. Tyrrell Rockafellar. *Convex analysis*. Vol. No. 28. Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1970, pp. xviii+451.
- [22] J. T. Schwartz. "Fast probabilistic algorithms for verification of polynomial identities". In: J. Assoc. Comput. Mach. 27.4 (1980), pp. 701–717. ISSN: 0004-5411,1557-735X. DOI: 10.1145/322217.322225.

14 REFERENCES

- [23] Karl Schwede. "Centers of F-purity". In: $Math.\ Z.\ 265.3\ (2010)$, pp. 687-714. ISSN: 0025-5874,1432-1823. DOI: 10.1007/s00209-009-0536-5.
- [24] Karl Schwede. "Generalized test ideals, sharp F-purity, and sharp test elements". In: $Math.\ Res.\ Lett.\ 15.6\ (2008),\ pp.\ 1251–1261.\ ISSN:\ 1073-2780.\ DOI:\ 10.4310/MRL.2008.v15.n6.a14.$
- [25] Karl Schwede and Wenliang Zhang. "Bertini theorems for F-singularities". In: Proc. Lond. Math. Soc. (3) 107.4 (2013), pp. 851–874. ISSN: 0024-6115,1460-244X. DOI: 10.1112/plms/pdt007.
- [26] Shunsuke Takagi and Kei-ichi Watanabe. "On F-pure thresholds". In: *J. Algebra* 282.1 (2004), pp. 278–297. ISSN: 0021-8693,1090-266X. DOI: 10.1016/j.jalgebra.2004.07.011.