F-PURE THRESHOLDS OF EQUIGENERATED IDEALS

BENJAMIN BAILY

ABSTRACT. Let k be a field of characteristic p > 0 and $R = k[x_0, \ldots, x_n]$. We consider ideals $I \subseteq R$ generated by d-forms. Takagi and Watanabe proved that $\operatorname{fpt}(I) \ge \operatorname{codim}(I)/d$; we classify ideals I for which equality is attained. Additionally, we describe a new relationship between $\operatorname{fpt}(I)$ and $\operatorname{fpt}(I|_H)$, where H is a general hyperplane through the origin. As a consequence, for polynomials $f \in R_d$ with $p \ge n - 1$, we show that either p divides the denominator of $\operatorname{fpt}(f)$ or $\operatorname{fpt}(f) \ge r/d$, where r is the codimension of the singular locus of f.

1. INTRODUCTION

The F-pure threshold, introduced by Takagi and Watanabe [18], is an invariant of a pair (R, I), where R is an F-finite F-pure ring of characteristic p > 0 and $I \subseteq R$ a proper ideal. The F-pure threshold fpt(R, I) measures, in a sense, the failure of R/I to be F-pure. We consider the case of an *equigenerated* ideal in a polynomial ring over an algebraically-closed field. Most of the literature on F-pure thresholds of equigenerated ideals [1, 10, 9, 16, 19] concentrates on the case of a principal ideal generated by a homogeneous polynomial; our main result (Theorem 3.17) considers an ideal of arbitrary codimension.

We have the following sharp lower bound on fpt(R, I):

Proposition 1.1 ([18], Proposition 4.2). Let k be a field of characteristic p > 0 and set $R = k[x_0, \ldots, x_n]$. Suppose $I \subseteq R$ is generated by forms of degree d and set $h = \operatorname{codim}(I)$. Then $\operatorname{fpt}(I) \geq h/d$.

If we instead consider a field of characteristic 0 and the log canonical threshold (lct) of an equigenerated ideal, much more is known.

Theorem 1.2 ([4], Theorem 3.5). Let k be an algebraically closed field of characteristic zero and set $R = k[x_0, \ldots, x_n]$. Suppose $I = (f_1, \ldots, f_r) \subseteq R$ is generated by d-forms. Let Z denote the non-klt locus of $(R, I^{\text{lct}(I)})$ and set e = codim(Z). Then we have $\text{lct}(I) \ge e/d$ with equality if and only if there exist linear forms ℓ_1, \ldots, ℓ_e such that $Z = (\ell_1, \ldots, \ell_e)$ and $f_i \in K[\ell_1, \ldots, \ell_e]$ for all $1 \le i \le r$.

Our goal is to bridge the gap between Proposition 1.1 and Theorem 1.2. As we show in Example 5.1, a naive translation of Theorem 1.2 into characteristic p is not true without an additional hypothesis. Towards the goal of bridging this gap, we contribute two results. The first is a classification of ideals for which the lower bound in Proposition 1.1 is sharp.

Theorem 3.17. Let k be an algebraically-closed field of characteristic p > 0. Let I be a homogeneous ideal in $k[x_0, \ldots, x_n]$ generated by d-forms and set $h = \operatorname{codim}(I)$. Then $\operatorname{fpt}(I) = h/d$ if and only if $\overline{I} = (x_0, \ldots, x_{h-1})^d$ up to change of coordinates.

The proof of Theorem 3.17 goes as follows. First, we prove the claim in the case that I is complete intersection of codimension n, see Lemma 3.14. In this case, let \mathfrak{p} be a minimal prime over I. Since \mathfrak{p} is the ideal of a point in \mathbb{P}^n , we may change coordinates so that $\mathfrak{p} = (x_1, \ldots, x_n)$. We then transform Theorem 3.17 to a statement about the monomial ideals $\{in_{\geq_{lex}}(I^m)\}_{m>0}$, which we solve using convex geometry. After applying estimates for the Hilbert series of powers of I (Lemma 3.15, the result is a consequence of a 1960 result of Grünbaum, Theorem 3.9.

The author was supported by NSF grant DMS-2101075 and NSF RTG grant DMS-1840234.

BENJAMIN BAILY

To lift the hypothesis that I is a complete intersection, we observe that h general d-forms in I generate a complete intersection $J \subseteq I$, and we show that J is a reduction of I. To lift the hypothesis that codim I = n, we use induction and consider $I|_H$, where H is a general hyperplane through the origin. By Proposition 1.1, we have $h/d \leq \operatorname{fpt}(I|_H) \leq \operatorname{fpt}(I) = h/d$, so $\overline{I|_H} = (x_0, \ldots, x_{h-1})^d$. By Proposition 3.3, we deduce that I has the same form.

Our second contribution is a lower bound fpt(R, f) in terms of the codimension of the singular locus of f. Compare with [3, Theorem 1.1], a preprint which was later superceded by [4].

Theorem 5.3. Suppose char k = p > 0 and $R = k[x_0, \ldots, x_n]$. Suppose that $f \in R_d$ is smooth in codimension c and p does not divide the denominator of $\operatorname{fpt}(f)$. Further suppose that $c \ge n$ or $p \ge c$. Then $\operatorname{fpt}(f) \ge \min(c/d, 1)$.

In the case that $h \ge n$, we observe that $(R, f^{\text{fpt}(f)})$ has an F-pure center which is a monomial ideal and apply a Fedder-type criterion from [13], see Lemma 5.2. When h < n, we reduce to the case h = n by intersecting with a general hyperplane through the origin and applying the following Bertini theorem for F-purity:

Theorem 4.3. Let k be an infinite field of characteristic p > 0. Let $R = k[x_0, \ldots, x_n]$. Let $I \subseteq R$ be an ideal generated by forms of degree at most d. Let $H \in (\mathbb{P}^n)^{\vee}$ be a general hyperplane through the origin. Then for all $0 \leq t < \frac{n}{d} - \frac{n-1}{pd}$, the pair (R, I^t) is sharply F-split if and only if $(H, I^t|_H)$ is sharply F-split.

A Bertini theorem for F-purity of pairs is already known [15, Theorem 6.1]. Schwede and Zhang's result, however, considers a general member of a free linear system, whereas Theorem 4.3 considers a general member of a linear system with $0 \in \mathbb{A}^{n+1}$ as a base point. To ensure that neither [15, Theorem 6.1] nor Theorem 4.3 implies the other, we demonstrate in Example 4.5 that the exponent $\frac{n}{d} - \frac{n-1}{pd}$ is optimal.

2. Preliminaries

Theorem 2.1 ([17], Proposition 11.2.1, Theorem 11.3.1). Let (R, \mathfrak{m}) be a formally equidimensional local ring and $I \subseteq J$ two \mathfrak{m} -primary ideals. Then e(I) = I(J) if and only if $\overline{I} = \overline{J}$.

2.1. The F-Pure Threshold.

Definition 2.2 (F-Pure Threshold, [14] Chapter 4.4). Let R be an F-finite ring, $I \subseteq R$ an ideal, and $t \in \mathbb{R}^+$. The pair (R, I^t) is sharply F-split if for some (equivalently, infinitely many) e > 0, the map

$$I^{\lfloor t(p^e-1) \rfloor} \cdot \operatorname{Hom}(F^e_*R, R) \to R$$

is surjective. The *F*-pure threshold of the pair (R, I) is the supremum of all t such that (R, I^t) is sharply F-split. We denote this quantity by fpt(R, I), or fpt(I) when the ambient ring is clear.

In practice, the following proposition is a more useful characterization of the F-pure threshold.

Proposition 2.3 ([14], Exercises 4.19-4.20). Let (R, \mathfrak{m}) be an *F*-finite regular local ring. Then the *F*-pure threshold of the pair (R, I^t) is equal to

$$\sup\left\{\frac{\nu}{p^e}: I^\nu \notin \mathfrak{m}^{[p^e]}\right\}.$$

In fact, let $\nu_I(p^e) = \max\{r : I^r \notin \mathfrak{m}^{[p^e]}\}$. Then the F-pure threshold of (R, \mathfrak{a}) is equal to the limit $\lim_{e \to \infty} \nu_I(p^e)/p^e$.

If instead R is a polynomial ring over an F-finite field and $I \subseteq R$ a homogeneous ideal, then the same results hold when we let \mathfrak{m} denote the homogeneous maximal ideal of R.

Proposition 2.4 (Properties of the F-pure threshold). Let R be a reduced, F-finite, F-pure ring of characteristic p > 0. Then for all ideals $I \subseteq R$ such that I contains a nonzerodivisor, we have

- (i) If $I \subseteq J$, then $\operatorname{fpt}(I) \leq \operatorname{fpt}(J)$.
- (ii) For all m > 0, we have $\operatorname{fpt}(I^m) = m^{-1} \operatorname{fpt}(I)$.
- (iii) We have $\operatorname{fpt}(I) = \operatorname{fpt}(\overline{I})$, where \overline{I} denotes the integral closure of I.

Proof. See [18, Proposition 2.2] (1), (2), (6).

We will require the following essential fact:

Proposition 2.5. Let $R = k[x_0, ..., x_n]$. Let > be a monomial order. Let $I \subseteq R$ be an ideal, and $in_>(I)$ the initial ideal of I with respect to >. Then $fpt(in_>(I)) \leq fpt(I)$.

Proof. See [18], the claim preceding Remark 4.6.

2.2. Newton Polytopes of Monomial Ideals. When working with monomial ideals, one often identifies a monomial $x_0^{a_0} \cdots x_n^{a_n}$ with the point $(a_0, \ldots, a_n) \in \mathbb{Z}_{\geq 0}^{n+1}$. For future reference, it will help to give a name to this identification.

Definition 2.6. Let k be a field. We define the map

log: {monomials in $k[x_0, ..., x_n]$ } $\to \mathbb{Z}_{\geq 0}^{n+1}$, $\log(x_0^{a_0} \cdots x_n^{a_n}) = (a_0, ..., a_n)$.

Definition 2.7. Let $\mathfrak{a} \subseteq k[x_0, \ldots, x_n]$ be a monomial ideal. Then the Newton Polytope of I, denoted $\Gamma(\mathfrak{a})$, is the convex hull in \mathbb{R}^{n+1} of $\log(\mathfrak{a})$. Later on, we will let $\operatorname{conv}(-)$ denote the convex hull of a set.

Remark 2.8. We record several properties of $\Gamma(\mathfrak{a})$.

- (i) $\Gamma(\mathfrak{a})$ is a closed, convex, unbounded subset of the first orthant of \mathbb{R}^n .
- (ii) When \mathfrak{a} is an \mathfrak{m} -primary ideal, the complement of $\Gamma(\mathfrak{a})$ inside the first orthant is an open, bounded polyhedron.
- (iii) For two ideals $\mathfrak{a}, \mathfrak{b}$, the Minkowski sum of $\Gamma(\mathfrak{a})$ and $\Gamma(\mathfrak{b})$ is equal to $\Gamma(\mathfrak{a}\mathfrak{b})$. In particular, $\Gamma(\mathfrak{a}^n) = n\Gamma(\mathfrak{a})$.

For the proof of Theorem Theorem 3.17, we will also require the following three conventions.

Definition 2.9. We define the standard *n*-simplex $\Delta_n \subseteq \mathbb{R}^{n+1}$ as follows:

 $\Delta_n = \{(a_0, \dots, a_n) : 0 \le a_i, a_0 + \dots + a_n = 1.\}$

Definition 2.10. Let $I \subseteq k[x_0, \ldots, x_n]$ be a homogeneous ideal and $t \in \mathbb{Z}^+$. We let $[I]_t$ denote the vector space of *t*-forms in *I*.

Definition 2.11. Let $\mathfrak{a} \subseteq k[x_0, \ldots, x_n]$ be a monomial ideal and $t \in \mathbb{Z}^+$. We define $\Gamma(\mathfrak{a}, t)$ as the convex hull of $\log([\mathfrak{a}]_t)$, and we let $\gamma(\mathfrak{a}, t)$ denote the relative interior of $\Gamma(\mathfrak{a}, t)$ inside $t\Delta_n$.

Remark 2.12. It is sometimes the case that $\Gamma(\mathfrak{a},t) \subsetneq \Gamma(\mathfrak{a}) \cap t\Delta_n$, even if \mathfrak{a} is integrally closed. Consider $\mathfrak{a} = (x, y^3)$ as an ideal of $k[x_0, x_1]$; we have $(0.5, 1.5) \in (\Gamma(\mathfrak{a}) \cap 2\Delta_1) \setminus \Gamma(\mathfrak{a}, 2)$.

Proposition 2.13 ([8], Proposition 36). Let $\mathfrak{a} \subseteq k[x_0, \ldots, x_n]$ be a monomial ideal. Then

$$\operatorname{fpt}(\mathfrak{a}) = \frac{1}{\mu}, \text{ where } \mu = \inf\{t : t\vec{1} \in \Gamma(\mathfrak{a})\}.$$

Definition 2.14. Let \mathfrak{a}_{\bullet} be a graded sequence of monomial ideals. That is, suppose $\mathfrak{a}_{r}\mathfrak{a}_{s} \subseteq \mathfrak{a}_{r+s}$ for all $r, s \in \mathbb{Z}^+$. We define $\Gamma(\mathfrak{a}_{\bullet})$ as the closure in \mathbb{R}^{n+1} of the ascending union $\{\frac{1}{2^{m}}\Gamma(\mathfrak{a}_{2^{m}})\}_{m>0}$.

Following the proof of [2], Theorem 1.4 and the terminology of [11], we also define the *limiting* polytope of an ideal $I \subseteq R = k[x_0, \ldots, x_n]$.

Definition 2.15. Let > be a monomial order on R. We set $\Gamma_{>}(I) = \Gamma(\mathfrak{a}_{\bullet})$, where $\mathfrak{a}_{n} = \operatorname{in}_{>}(I^{n})$.

BENJAMIN BAILY

2.3. Essential Codimension.

Definition 2.16 (Essential Codimension). Let $J \subseteq R = k[x_0, \ldots, x_n]$ be a homogeneous ideal. The essential codimension $\mathfrak{e}(J)$ is equal to the minimal r for which there exist linear forms ℓ_1, \ldots, ℓ_r such that J is extended from $I \subseteq k[\ell_1, \ldots, \ell_r]$.

Lemma 2.17. Let $I, J, \ell_1, \ldots, \ell_r$ be as in Definition 2.16. Then $\mathfrak{e}(I) = r$.

Proof. The bound $\mathfrak{e}(I) \leq r$ is immediate. Conversely, if I is extended from an ideal $I' \subseteq k[\ell'_1, \ldots, \ell'_s] \subseteq k[\ell_1, \ldots, \ell_r]$, then J is extended from the same ideal, so $\mathfrak{e}(J) \leq \mathfrak{e}(I)$. \Box

3. Classification of Minimal F-Pure Thresholds

3.1. A Bertini Theorem for Essential Codimension.

Definition 3.1. We identify $(\mathbb{P}^n)^{\vee}$ with the space of hyperplanes passing through $0 \in \mathbb{A}^{n+1}$, as opposed to the usual convention of identifying $(\mathbb{P}^n)^{\vee}$ with the space of hyperplanes in \mathbb{P}^n .

While we expect that the following lemma is already known, we could not find the exact statement in the literature.

Lemma 3.2. Let k be an algebraically-closed field, $R = k[x_0, \ldots, x_n]$, and $J \subseteq R$ a nonzero homogeneous ideal. Suppose $\mathfrak{e}(J) = n + 1$. Then for general $H \in (\mathbb{P}^n)^{\vee}$, we have $\mathfrak{e}(J|_H) = n$.

Proof. Write $J = (f_1, \ldots, f_s)$ where deg $f_i = d_i$. Set $Z = \operatorname{Proj}(R/J) \subseteq \mathbb{P}^n$. For a hyperplane $H \in (\mathbb{P}^n)^{\vee}$, the condition that $\mathfrak{e}(J|_H) < n$ is equivalent to the existence of linear forms $\ell_1, \ldots, \ell_n \in R_1$ such that J is extended from $k[\ell_1, \ldots, \ell_n]$. Observe that J is extended from $k[\ell_1, \ldots, \ell_n]$ if and only if $f_i \in (\ell_1, \ldots, \ell_n)^{d_i}$ for all $1 \leq i \leq s$.

We define an incidence correspondence as follows:

$$B = \{ (x, H) \in Z \times (\mathbb{P}^n)^{\vee} : z \in H, f_i |_H \in \mathfrak{m}_x^{d_i} \text{ for all } 1 \le i \le s \}$$

Let $p: B \to Z, q: B \to (\mathbb{P}^n)^{\vee}$ be the projections. e will prove the claim in the following steps:

- (1) For each $z \in Z, B_z := p^{-1}(z)$ satisfies $|B_z| < \infty$.
- (2) Deduce that q(B) is a proper closed subset of $(\mathbb{P}^n)^{\vee}$.
- (3) Conclude that a general hyperplane section of Z is not a cone.

Fix $z \in Z$ and change coordinates so that $z = [0 : \dots : 0 : 1]$. Write $f_i =: g_i + x_n h_i$ for $g_i \in \mathfrak{m}_z^{d_i}, h_i \in \mathfrak{m}^{d_i-1}$. Let $(z, H) \in B_z$ where $H = V(\ell)$. Then there exist $g'_i \in \mathfrak{m}_z^{d_i}, h'_i \in \mathfrak{m}^{d_i-1}$ such that $g_i + x_n h_i = g'_i + \ell h'_i$. Write $h'_i =: g''_i + x_n h''_i$, where $g''_i \in \mathfrak{m}_z^{d-1}$. Then $x_n(h_i - \ell h''_i) = g'_i + \ell g''_i - g_i \in \mathfrak{m}_z^d$, so $h_i - \ell h''_i = 0$. In particular, $\ell \mid h_i$. It follows that $B_z = \{(z, V(\ell) : \ell \mid h_i \text{ for all } 1 \le i \le j\}$. By assumption, $\mathfrak{c}(J) = n + 1$. Consequently, we have $h_i \neq 0$ for some i, so $|B_z| \le \max(d_1, \dots, d_j) < \infty$.

For the second step, every closed fiber B_z is zero-dimensional, so dim $B \leq \dim Z$. Consequently, dim $q(B) \leq \dim B \leq \dim Z < n$, so q(B) is a proper closed subset of $(\mathbb{P}^n)^{\vee}$. For the final step, we note that for general $H \in (\mathbb{P}^n)^{\vee}$, there is no $z \in Z$ such that $(z, H) \in B$. Consequently, there is no $z \in Z \cap H$ such that $f_i \in \mathfrak{m}_z^{d_i}|_H$ for all i, so $\mathfrak{e}(J|_H) = n$.

The following proposition describes the behavior of essential codimension under restriction to a general linear subspace through the origin.

Proposition 3.3. Let k be an algebraically-closed field, $R = k[x_0, \ldots, x_n]$, and $J \subseteq R$ a homogeneous ideal. Set $r = \operatorname{codim}(J)$. Let $L = (\ell_{r+1}, \ldots, \ell_n)$, where the ℓ_i are chosen generally. For $r \leq t \leq n$, set $L_t = (\ell_{t+1}, \ldots, \ell_n)$ and $J_t = \frac{J+L_t}{L_t}$. Then for all $r \leq t \leq n$, we have $\mathfrak{e}(J_t) = \max(t+1, \mathfrak{e}(J))$.

Proof. By induction, it suffices to consider the case t = n - 1. The case $\mathfrak{e}(J) = n + 1$ is covered by Lemma 3.2; it remains to show that $\mathfrak{e}(J_{n-1}) = \mathfrak{e}(J)$ provided $\mathfrak{e}(J) \leq n$.

Set $s = \mathfrak{e}(J)$ and change coordinates so that J is extended from an ideal $I \subseteq k[x_0, \ldots, x_{s-1}]$. Suppose $s \leq n$. Let $I' = Ik[x_0, \ldots, x_{n-1}]$. By Lemma 2.17, we have $\mathfrak{e}(I') = \mathfrak{e}(I) = \mathfrak{e}(J)$. The isomorphism $k[x_0, \ldots, x_n]/(\ell_n) \cong k[x_0, \ldots, x_{n-1}]$ identifies J_{n-1} with I', so $\mathfrak{e}(J_{n-1}) = \mathfrak{e}(I') = \mathfrak{e}(J)$.

3.2. Mixed Volumes and Lattice Points. To begin, we recall the following theorem of Minkowski.

Theorem 3.4 (Minkowski). Let K_1, \ldots, K_r be convex bodies in \mathbb{R}^n . Then the function

$$\operatorname{vol}_n(\lambda_1 K_1 + \dots + \lambda_r K_r)$$

is a homogeneous polynomial of degree n in the variables $\lambda_1, \ldots, \lambda_r$.

The coefficients of this polynomial are called the mixed volumes of the convex bodies K_1, \ldots, K_r .

Definition 3.5. The mixed volumes $V_n(K_1^{\langle a_1 \rangle}, \ldots, K_r^{\langle a_r \rangle})$ are defined by the formula

$$\operatorname{vol}_n(\lambda_1 K_1 + \dots + \lambda_r K_r) = \sum_{a_1 + \dots + a_r = n} \binom{n}{a_1, \dots, a_r} V_n(K_1^{\langle a_1 \rangle}, \dots, K_r^{\langle a_r \rangle}) \lambda_1^{a_1} \dots \lambda_r^{a_r}.$$

The expression $V_n(K_1^{\langle a_1 \rangle}, \ldots, K_r^{\langle a_r \rangle})$ is shorthand for the quantity $V_n(K_1, \ldots, K_1, \ldots, K_r, \ldots, K_r)$ where K_i is repeated a_i times.

Theorem 3.6 (Source). The coefficients $V_n(K_1, \ldots, K_n)$ are well-defined and satisfy the following properties:

- (i) Volume: $V_n(K, \ldots, K) = \operatorname{vol}_n(K)$.
- (ii) Symmetry: V_n is symmetric in its arguments.
- *(iii)* Multilinearity:

$$V_n(\lambda_1 K_1 + \lambda_2 K_2, K_3, \dots, K_n) = \lambda_1 V_n(K_1, K_3, \dots, K_r) + \lambda_2 V_n(K_2, K_3, \dots, K_n)$$

- (iv) Nonnegativity: $V_n(K_1, \ldots, K_n) \ge 0$.
- (v) Translation-Invariance: $V_n(K_1 + \{x\}, K_2, ..., K_n) = V_n(K_1, K_2, ..., K_n).$

(vi) Monotonicity: If $K_i \subseteq K'_i$ for all i, then $V_n(K_1, K_2, \ldots, K_n) \leq V_n(K'_1, K'_2, \ldots, K'_n)$.

Moreover, V_n is the unique function satisfying properties (i)-(iii).

Definition 3.7. Let $\pi_n : \mathbb{R}^{n+1} \to \mathbb{R}^n$ denote the projection onto the first *n* coordinates.

Lemma 3.8. Let $\Delta_n \subseteq \mathbb{R}^{n+1}$ be as in Definition 2.9. Let $t \in \mathbb{R}^+$ and let $P \subseteq t\Delta_n$ be a convex polytope. Then $\operatorname{vol}_n(\pi_n(P)) \ge \#(P \cap \mathbb{Z}^{n+1}) - (t+1)^n + t^n$.

Proof. Let $C_n \subseteq \mathbb{R}^n$ denote the centered unit cube $[-\frac{1}{2}, \frac{1}{2}]^n$ and set $Q = \pi_n(P)$. Then we have

(1)
$$\#P \cap \mathbb{Z}^{n+1} \le \#Q \cap \mathbb{Z}^n = \sum_{x \in Q \cap \mathbb{Z}^n} \operatorname{vol}(C_n) = \operatorname{vol}((Q \cap \mathbb{Z}^n) + C_n) \le \operatorname{vol}(Q + C_n),$$

so it suffices to estimate $vol(Q + C_n)$. By Theorem 3.4, we have

(2)
$$\operatorname{vol}(Q+C_n) = \sum_{i=0}^n \binom{n}{i} V_n(Q^{\langle i \rangle}, C_n^{\langle n-i \rangle}).$$

Since $\frac{1}{t}Q \subseteq \pi_n(\Delta_n)$ and $\pi_n(\Delta_n) \subseteq \{(\frac{1}{2}, \ldots, \frac{1}{2})\} + C_n$, by Theorem 3.6, we have

(3)
$$V_n(Q^{\langle i \rangle}, Q_n^{\langle n-i \rangle}) = t^i V_n(\frac{1}{t}Q, C_n) \le t^i \operatorname{vol}(C_n) = t^i.$$

BENJAMIN BAILY

Applying the bound Equation (3) to Equation (2) for all $0 \le i \le n-1$, we obtain

(4)
$$\operatorname{vol}(Q + C_n) \le \sum_{i=0}^{n-1} \binom{n}{i} t^i + \operatorname{vol}(Q) = (t+1)^n - t^n + \operatorname{vol}(Q).$$

Combining Equations (1) and (4) and rearranging gives the result.

3.3. An Application of Grünbaum's Inequality. We first recall a result of Grünbaum, which we state an equivalent version of below.

Theorem 3.9 ([5], Theorem 2). Let $K \subseteq \mathbb{R}^n$ be a convex body and let c denote the centroid of K. Let H^+ be a half-space whose boundary hyperplane contains c. Then

$$\operatorname{vol}(H^+ \cap K) \le \left(1 - \left(\frac{n}{n+1}\right)^n\right) \operatorname{vol}(K).$$

Definition 3.10. We let \mathcal{M}_n denote the quantity $\left(1 - \left(\frac{n}{n+1}\right)^n\right)$ from the theorem.

For our purposes, we must characterize the equality case of Theorem 3.9.

Proposition 3.11. Suppose H^+ , K are as in Theorem 3.9, with vol(K) > 0 and $vol(H^+ \cap K) = \mathcal{M}_n vol(K)$. Let H denote the boundary hyperplane of H^+ . Then there exists a convex body $K' \subseteq H^+ \cap K$ and a point $q \in H^- \cap K$ such that K' is contained in a hyperplane parallel to H and $K = conv(K' \cup \{q\})$.

Proof. Follows from [12], Corollary 8.

Lemma 3.12. Let $T_n := \pi_n(\Delta_n)$. Let $z_n = (\frac{1}{n+1}, \ldots, \frac{1}{n+1})$ denote the centroid of T_n . Let H^+ be a half-space whose boundary hyperplane H contains z_n . Then

$$\operatorname{vol}(H^+ \cap T_n) \le \frac{\mathcal{M}_n}{n!}$$

with equality if and only if H is parallel to a facet F of T_n with $F \subseteq H^+$.

Proof. If K' is an n-1-dimensional convex set and q a point not contained in the hyperplane supporting K' such that $\operatorname{conv}(K' \cup \{q\})$ is a polytope, then K' is a facet of $\operatorname{conv}(K' \cup \{q\})$. The result therefore follows from Proposition 3.11.

Lemma 3.13. Let $P \subseteq T_n$ be a closed convex set with $z_n \notin intP$. Then $vol(P) \leq \mathcal{M}_n/n!$ with equality if and only if P is the intersection of T_n with a half-space satisfying the conditions of Lemma 3.12.

Proof. First, we note that it suffices to consider P with $z_n \in \partial P$. To see this, if $z_n \notin \partial P$, then for $0 < \varepsilon \leq \text{dist}_{L^1}(P, z_n)$, the set $(P + \varepsilon C_n) \cap T_n$ is a strictly larger convex set which does not contain z_n in its interior.

Moving forward, we assume $z_n \in \partial P$. Let $\chi_P : T_n \to [0,1]$ denote the characteristic function of P. Since $-\chi_P$ is proper and convex, there exists a subgradient v to $-\chi_P$ at z_n . Let H^- denote the set $\{x \in \mathbb{R}^n : \langle v, (x - z_n) \rangle \leq 0\}$. As

$$\langle v, (x - z_n) \rangle \le -\chi_P(x) + \chi_P(z_n) = 1 - \chi_P(x)$$

for all $x \in T_n$, we have $P \subseteq H^-$. We have $\operatorname{vol}(P) \leq \operatorname{vol}(T_n \cap H^-)$ with equality if and only if $P = T_n \cap H^-$. It suffices, therefore, to show prove the claim for $P = H^- \cap T_n$. This, however, is immediate from Lemma 3.12.

3.4. Proof of Theorem 3.17.

Lemma 3.14. Let k be an an algebraically-closed field of charactestic p > 0 and let $R = k[x_0, \ldots, x_n]$. Let $I = (f_1, \ldots, f_n) \subseteq R$ denote a complete intersection ideal generated by d-forms. Then $\operatorname{fpt}(I) \ge n/d$, with equality if and only if $\overline{I} = (x_1, \ldots, x_n)^d$ up to change of coordinates.

We begin with a computation of the Hilbert series of R/I^s .

Lemma 3.15. Let I, R be as in Lemma 3.14. For $t \ge d(s-1) + (n-1)d - n + 2$, we have $H_R(R/I^s, t) = \binom{n+s-1}{n}d^r$. In particular, this holds for $t \ge d(s+n)$.

Proof. We define

$$\mathcal{L}_{n,s} := \{(a_1, \dots, a_n) : a_i \ge 0, a_1 + \dots + a_n \le s - 1\}.$$

By [6], Corollary 2.3, we have

$$H_R(R/I^s, t) = \sum_{(a_1, \dots, a_r) \in \mathcal{L}_{n,s}} H_R(R/I, t - d(a_1 + \dots + a_n)).$$

The Koszul resolution of R/I shows that the CM-regularity of R/I is d(n-1)-n+1, so $H_R(R/I, t)$ agrees with the Hilbert polynomial of R/I for $t \ge d(n-1)-n+2$. The Hilbert polynomial of R/I is d^n , so for $t \ge d(s-1) + (n-1)d - n + 2$, we have

$$H_R(R/I^s,t) = |\mathcal{L}_{n,s}|d^n = \binom{n+s-1}{n}d^n.$$

The second part of the statement follows from the bound

$$d(s-1) + (n-1)d - n + 2 \le (ds-1) + (nd-1) + 2 = d(s+n).$$

Lemma 3.16. Let $\mathfrak{a} \subseteq R$ be a monomial ideal containing a monomial m of degree t. For any t' > t, if $\frac{t'}{n+1} \vec{1} \in \gamma(\mathfrak{a}, t')$, then $\operatorname{fpt}(\mathfrak{a}) > \frac{n+1}{t'}$.

Proof. Set $y = \log(m)$. By convexity of $\Gamma(\mathfrak{a})$, we have $\lambda y + (1 - \lambda)\gamma(\mathfrak{a}, t') \subseteq \Gamma(\mathfrak{a})$ for all $\lambda \in [0, 1]$. Taking $0 < \lambda \ll 1$, we obtain $\frac{\lambda t + (1 - \lambda)t'}{n+1} \vec{1} \in \Gamma(\mathfrak{a})$, which implies $\operatorname{fpt}(\mathfrak{a}) \ge \frac{n+1}{\lambda t + (1 - \lambda)t'} > \frac{n+1}{t'}$. \Box

We now prove Lemma 3.14.

Proof. Let \mathfrak{p} be a minimal prime over I. Since $k = \overline{k}$ and I is homogeneous, we may change coordinates so that $\mathfrak{p} = (x_1, \ldots, x_n)$. Let > denote the lexicographic order, and define the graded system of ideals $\mathfrak{a}_{\bullet} = \{ \operatorname{in}_{>}(I^{nm}) \}_m$. Since \mathfrak{p}^r is a monomial ideal for all $r \ge 0$ and $I^r \subseteq \mathfrak{p}^r$, we have $\mathfrak{a}_m \subseteq \mathfrak{p}^{nm}$ for all $m \ge 0$. Since \mathfrak{a}_{\bullet} is graded, we have for any $t \in \mathbb{Z}^+$

$$[\mathfrak{a}_{2^m}]_{2^m t}[\mathfrak{a}_{2^m}]_{2^m t} \subseteq [\mathfrak{a}_{2^m}\mathfrak{a}_{2^m}]_{2^{m+1}t} \subseteq [\mathfrak{a}_{2^{m+1}}]_{2^{m+1}t}.$$

It follows that $\{\frac{1}{2^m}\gamma(\mathfrak{a}_{2^m},2^mt)\}_m$ is an ascending chain of convex subsets of H_t . We then set t = d(n+1) and let \mathcal{P} denote the ascending union $\bigcup_{m\geq 1}\gamma(\mathfrak{a}_{2^m},2^md(n+1))$. If $d\vec{1}\in\mathcal{P}$, there exists some m such that $d\vec{1}\in\gamma(\mathfrak{a}_{2^m},2^md(n+1))$. By Lemma 3.16, we have $\operatorname{fpt}(\mathfrak{a}_{2^m})>\frac{n+1}{2^md(n+1)}=\frac{1}{2^md}$, so $\operatorname{fpt}(I)>n/d$.

Conversely, suppose $d\vec{1} \notin \mathcal{P}$. Then for all m, we have $d\vec{1} \notin \frac{1}{2^m}\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))$. By Lemma 3.13, we have

(5)
$$\operatorname{vol}(\mathcal{P}) = \lim_{m \to \infty} \operatorname{vol}\left(\frac{1}{2^m}\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))\right) \le (d(n+1))^n \frac{\mathcal{M}_n}{n!}$$

We now derive a lower bound for $vol(\mathcal{P})$. First, by Lemma 3.15, we have

$$\begin{aligned} \#\mathbb{Z}^{n+1} \cap (\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))) &\geq H_R(\mathfrak{a}_{2^m}, 2^m d(n+1)) \\ &= H_R(I^{2^m n}, 2^m d(n+1)) \\ &= \binom{n+2^m d(n+1)}{n} - \binom{n+2^m n-1}{n} d^n \end{aligned}$$

provided $2^m d(n+1) \ge d(2^m n+n)$, which is satisfied for all $m \ge \log_2 n$. Using the approximation $\binom{a+b}{b} = \frac{a^b}{b!} + O_b(a^{b-1})$, we have

(6)
$$\#\mathbb{Z}^{n+1} \cap (\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))) \ge \frac{(2^m d)^n}{n!} ((n+1)^n - n^n) + O(2^{m(n-1)})$$

Consequently, by Lemma 3.8 we have

$$\operatorname{vol}(\mathcal{P}) = \lim_{m \to \infty} \operatorname{vol}\left(\frac{1}{2^m} \gamma(\mathfrak{a}_{2^m}, 2^m d(n+1))\right) = \lim_{m \to \infty} \frac{1}{2^{mn}} \operatorname{vol}(\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1)))$$
$$\geq \lim_{m \to \infty} \frac{1}{2^{mn}} \frac{(2^m d)^n}{n!} \left((n+1)^n - n^n\right) + O(2^{m(n-1)})$$
$$= (d(n+1))^n \frac{\mathcal{M}_n}{n!}.$$

It follows that $\operatorname{vol}(\mathcal{P}) = \operatorname{vol}(\overline{\mathcal{P}}) = (d(n+1))^n \frac{\mathcal{M}_n}{n!}$, so by Lemma 3.12, we have $\overline{\mathcal{P}} = H^+ \cap (d(n+1))\Delta_n$. Moreover, the boundary hyperplane H of H^+ is parallel to a facet F of $(d(n+1))\Delta_n$ with $F \subseteq H^+$ and $d(n+1)\eta_n \in H$.

For $\alpha \in \mathbb{R}$, define $D_{t,\beta} = \{(a_0, \ldots, a_n) \in t\Delta_n : y_0 \leq \beta\}$. Since $\mathfrak{a}_m \subseteq \mathfrak{p}^{mn}$, for any monomial $x_0^{a_0} \ldots x_n^{a_n} \in (\mathfrak{a}_m)_t$, we have $a_1 + \cdots + a_n \geq mn$ and hence $a_0 \leq t - mn$. In particular, for all $m \geq 0$ we have

$$\gamma(\mathfrak{a}_{2^m}, 2^m d(n+1)) \subseteq D_{2^m d(n+1), 2^m n(d+1) - 2^m n}.$$

As a consequence, we conclude $\mathcal{P} \subseteq D_{d(n+1),d(n+1)-n}$. It follows that the facet F is the facet $\{a_0 = 0\}$, so we conclude $\overline{\mathcal{P}} = D_{d(n+1),d}$. We then have

$$\Gamma(\mathfrak{a}_1, d(n+1)) \subseteq \overline{\mathcal{P}} = D_{d(n+1),d} = \Gamma(\mathfrak{p}^{nd}, d(n+1)),$$

so $[\mathfrak{a}_1]_{d(n+1)} \subseteq [\mathfrak{p}^{nd}]_{n(d+1)}$. For each generator f_i of I, we have $x_0^d \operatorname{in}_{>}(f_i^n) \in [\mathfrak{a}_1]_{d(n+1)} \subseteq [\mathfrak{p}^{nd}]_{n(d+1)}$, so $x_0 \nmid \operatorname{in}_{>}(f_i^n)$ for all i. As $\operatorname{in}_{>}(f_i^n) = \operatorname{in}_{>}(f_i)^n$, we deduce that $I \subseteq \mathfrak{p}^d$.

As the generators of I are d-forms contained in $(x_1, \ldots, x_n)^d$, we have that I is extended from an ideal $I' \subseteq k[x_1, \ldots, x_n]$. It follows from Theorem 2.1 that $\overline{I} = \overline{I'}R = \mathfrak{p}^d$.

Theorem 3.17. Let k be an algebraically-closed field of characteristic p > 0. Let I be a homogeneous ideal in $k[x_0, \ldots, x_n]$ generated by d-forms and set $h = \operatorname{codim}(I)$. Then $\operatorname{fpt}(I) = h/d$ if and only if $\overline{I} = (x_0, \ldots, x_{h-1}2)^d$ up to change of coordinates.

Proof. Let k be an algebraically-closed field and $R = k[0_1, \ldots, x_n]$. Let $I \subseteq R$ be an ideal generated by d-forms, and suppose that $\operatorname{codim}(I) = n$. If f_1, \ldots, f_n are n-1 general d-forms in I, then $J = (f_1, \ldots, f_n)$ is a complete intersection. By Lemma 3.14, we may change coordinates on R such that $\overline{J} = (x_1, \ldots, x_n)^d$. Then we have $(x_1, \ldots, x_n)^d \subseteq \overline{I}$. Let > denote the lexicographic order, and let g be a d-form in \overline{I} . Write $\operatorname{in}_>(g) = x_0^{a_0} \cdots x_n^{a_n}$. Set $a = \max_i a_i$. Then

$$g^{\lfloor (p^e-1)/a \rfloor} \prod_{i=1}^n (x_i^d)^{\lfloor ((p^e-1)-a_i \lfloor (p^e-1)/a \rfloor)/d \rfloor} \notin \mathfrak{m}^{[p^e]},$$

so we have

$$\operatorname{fpt}(\operatorname{in}_{>}(\overline{I})) \ge \frac{1}{a} + \sum_{i=1}^{n} \left(\frac{1}{d} - \frac{a_i}{ad}\right) = \frac{n}{d} + \frac{a_0}{ad}.$$

Consequently, we have

$$\frac{n}{d} = \operatorname{fpt}(I) = \operatorname{fpt}(\overline{I}) \ge \operatorname{fpt}(\operatorname{in}_{>}(\overline{I})) \ge \operatorname{fpt}((x_1, \dots, x_n)^d + (x_0^{a_1} \cdots x_n^{a_n})) = \frac{n}{d} + \frac{a_0}{ad},$$

so we have $a_0 = 0$, hence $in_>(g) \in (x_1, \ldots, x_n)^d$. As > is the lexicographic order, it follows that $g \in (x_1, \ldots, x_n)^d$. As g was arbitrary, we conclude that $\overline{I} = (x_1, \ldots, x_n)^d$.

Next, we consider the case that $\operatorname{codim} I \neq n$. If $\operatorname{codim} I = n + 1$, then $\overline{I} = (x_0, \ldots, x_n)^{n+1}$ by Theorem 2.1. Otherwise, suppose $\operatorname{codim} I = h \leq n-1$. Let L be an ideal generated by n-h linear forms. Then $\frac{h}{d} \leq \operatorname{fpt}(\frac{I+L}{L}) \leq \frac{h}{d}$, so by the case where R/I is one-dimensional, we have that $\frac{\overline{I+L}}{L}$ is equal to $\frac{(x_1,\ldots,x_h)^d+L}{L}$ up to a change of variables. By Proposition 3.3, the same holds for I. \Box

4. A NEW BERTINI THEOREM FOR F-PURITY OF PAIRS

Lemma 4.1 ([1], Lemma 3.2). Let $R := k[x_0, \ldots, x_n], \mathfrak{m} := (x_0, \ldots, x_n)$. For $e, t \in \mathbb{Z}^+$, we have

$$(\mathfrak{m}^{[p^e]}:\mathfrak{m}^t) = \begin{cases} R & t \ge (n+1)p^e - n \\ \mathfrak{m}^{[p^e]} + \mathfrak{m}^{(n+1)p^e - n - t} & t < np^e - n + 1 \end{cases}$$

Lemma 4.2. Let k be a field of characteristic p > 0, let $R = k[x_1, \ldots, x_n]$, and $I \subseteq \mathfrak{m}$ a homogeneous ideal. For $H = V(\ell) \in (\mathbb{P}^n)^{\vee}$, we let $I|_H$ denote the image of I in R/ℓ . In this case, we have

(7)
$$\nu_{I|_H}(p^e) \le \max\{r : I^r \not\subseteq \mathfrak{m}^{[p^e]} + \mathfrak{m}^{n(p^e-1)+1}\}$$

Conversely, if $|k| \ge p^e$, then there exists $H \in (\mathbb{P}^n)^{\vee}(k)$ such that

(8)
$$\nu_{I|_{H}}(p^{e}) \ge \max\{r : I^{r} \not\subseteq \mathfrak{m}^{[p^{e}]} + \mathfrak{m}^{n(p^{e}-1)-(n-1)(p^{e-1})+1}\}$$

Proof. Let $\mathfrak{a}_e := \mathfrak{m}^{[p^e]} + \mathfrak{m}^{n(p^e-1)+1}$, $d_e = n(p^e-1) - (n-1)(p^{e-1}) + 1$, and $\mathfrak{b}_e := \mathfrak{m}^{[p^e]} + \mathfrak{m}^{d_e}$. We have $\mathfrak{a}|_H = \mathfrak{m}^{[p^e]}|_H$, which proves the bound 7. Conversely, suppose $f \in I^r \setminus \mathfrak{b}_e$ is a homogeneous element. We may assume deg $f = d_e$. Write

$$f = \sum_{a_0 + \dots + a_n = d_e} c_{a_0, \dots, a_n} x_0^{a_0} \cdots x_n^{a_n}.$$

For $\lambda \in k^n$, let H_{λ} denote the hyperplane cut out by $x_0 = \lambda_1 x_1 + \cdots + \lambda_n x_n$. For $b_1, \ldots, b_n \in \mathbb{Z}^{\geq 0}$ such that $b_1 + \cdots + b_n = d_e$, define

$$P_{b_1,\dots,b_n}(\lambda) := \sum_{a_0=0}^{d_e} \left(\sum_{\substack{a_i \le b_i \ \forall \ 1 \le i \le n \\ a_1 + \dots + a_n = d_e - a_0}} c_{a_0,\dots,a_n} \binom{a_0}{b_1 - a_1,\dots,b_n - a_n} \lambda_1^{b_1 - a_1} \cdots \lambda_n^{b_n - a_n} \right).$$

Then we have

$$f|_{H} = \sum_{a_{0}+\dots+a_{n}=d_{e}} c_{a_{0},\dots,a_{n}} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} (\lambda_{1}x_{1}+\dots\lambda_{n}x_{n})^{a_{0}}$$
$$= \sum_{b_{1}+\dots+b_{n}=d_{e}} x_{1}^{b_{1}}\dots x_{n}^{b_{n}} P_{b_{1},\dots,b_{n}}(\lambda).$$

To prove that $f|_H \notin \mathfrak{m}^{[p^e]}$ for some H, we will first prove that there exist b_1, \ldots, b_n for which $P_{b_1,\ldots,b_n}(\lambda)$ is a nonzero polynomial in λ . To this end, it suffices to produce $a_0, \ldots, a_n, b_1, \ldots, b_n$ such that

- (i) $a_0 + \dots + a_n = d_e$
- (ii) $c_{a_0,...,a_n} \neq 0$
- (iii) $b_1 + \dots + b_n = d_e$
- (iv) $a_i \leq b_i \leq p^e 1$ for all $1 \leq i \leq n$

(v) We have

$$\binom{a_0}{b_1 - a_1, \dots, b_n - a_n} \not\equiv 0 \mod p.$$

By assumption that $f \notin \mathfrak{m}^{[p^e]}$, it is possible to choose a_0, \ldots, a_n such that $a_0 + \cdots + a_n = d_e, a_0, \ldots, a_n \leq p^e - 1$, and $c_{a_0,\ldots,a_n} \neq 0$. We will prove, by induction on the *p*-ary digits of a_0 , that there exist b_1, \ldots, b_n satisfying (iii)-(v). The base case, when $a_0 = 0$, is obvious. Write $a_0 = \alpha_0 + \alpha_1 p + \cdots + \alpha_{e-1} p^{e-1}$ and suppose $\alpha_j \neq 0$.

By the pigeonhole principle, we have

$$\max_{1 \le i \le n} (p^e - 1) - a_i \ge p^e - \frac{d_e - a_0}{n} \ge p^e - \frac{d_e - p^j}{n} = \frac{(n - 1)(p^{e-1})}{n} + \frac{p^j}{n} \ge p^j.$$

It follows that there exists some $1 \le i \le n$ with $a_i + p^j \le p^e - 1$. We apply the induction hypothesis to produce integers b_1, \ldots, b_n satisfying (iii)-(v) with respect to $(a_0 - p^j, a_1, \ldots, a_i + p^j, \ldots, a_n)$. Since

$$\binom{a_0 - p_j}{b_1 - a_1, \dots, b_i - a_i - p_j, \dots, b_n - a_n} \not\equiv 0 \mod p_j$$

it follows by Lucas's theorem that we can perform the addition

$$(b_1 - a_1) + \dots + (b_i - a_i - p^j) + \dots + (b_n - a_n) = a_0 - p^j$$

in base p without having to carry a digit. Consequently, the same is true for the addition

$$(b_1 - a_1) + \dots + (b_i - a_i) + \dots + (b_n - a_n) = a_0$$

so b_1, \ldots, b_n satisfy conditions (iii)-(v) for the original tuple (a_1, \ldots, a_n) .

By the above analysis, the coefficient of $x_1^{b_1} \cdots x_{n-1}^{b_n}$ in $f|_H$ is a nonzero polynomial of total degree $a_n \leq p^e - 1$ in the variables $\lambda_1, \ldots, \lambda_n$. By the Schwarz-Zippel lemma [SRC], there exist $\lambda_1, \ldots, \lambda_{n-1}$ for which the coefficient is nonzero, proving the claim.

As a consequence, we have the following.

Theorem 4.3. Let k be an infinite field of characteristic p > 0. Let $R = k[x_0, \ldots, x_n]$. Let $I \subseteq R$ be an ideal generated by forms of degree at most d. Let $H \in (\mathbb{P}^n)^{\vee}$ be a general hyperplane through the origin. Then for all $0 \leq t < \frac{n}{d} - \frac{n-1}{pd}$, the pair (R, I^t) is sharply F-split if and only if $(H, I^t|_H)$ is sharply F-split.

Proof. The implication $(H, I^t|_H)$ sharply F-split $\implies (R, I^t)$ sharply F-split is well-known and additionally is immediate from Lemma 4.2. Conversely, suppose (R, I^t) is sharply F-split and $t < \frac{n}{d} - \frac{n-1}{pd}$. Then there exists $M \in \mathbb{Z}^+$ such that for all $e \in \mathbb{Z}^+, M \mid e$, we have $I^{\lceil t(p^e-1) \rceil} \not\subseteq \mathfrak{m}^{\lceil p^e \rceil}$. Since $t < \frac{n}{d} - \frac{n-1}{pd}$, we may choose $e \gg 0$ divisible by M such that $td < n(p^e-1) - (n-1)(p^{e-1}) + 1$, whence we have $I_H^{\lceil t(p^e-1) \rceil} \not\subseteq \mathfrak{m}^{\lceil p^e \rceil} \mid_H$ by Lemma 4.2.

In terms of the F-pure threshold, Theorem 4.3 says the following.

Corollary 4.4. Let R, I, H be as in Theorem 4.3. Then

$$\min\left(\frac{n}{d} - \frac{n-1}{pd}, \operatorname{fpt}(I)\right) \le \operatorname{fpt}(I|_H) \le \min\left(\frac{n}{d}, \operatorname{fpt}(I)\right)$$

Proof. For the first inequality, we note by Theorem 4.3 that $(R|_H, I^t|_H)$ is sharply F-split for all $\min\left(\frac{n}{d} - \frac{n-1}{pd}, \operatorname{fpt}(I)\right)$. For the second inequality, we have by Lemma 4.2

$$\operatorname{fpt}(I|_{H}) \leq \lim_{e \to \infty} p^{-e} \sup\{r : I^{r} \not\subseteq \mathfrak{m}^{[p^{e}]} + \mathfrak{m}^{n(p^{e}-1)+1}\}$$
$$\leq \lim_{e \to \infty} p^{-e} \min\left(\nu_{I}(p^{e}), \left\lfloor \frac{n(p^{e}-1)+1}{d} \right\rfloor\right) = \min\left(\operatorname{fpt}(I), \frac{n}{d}\right)$$

REFERENCES

11

Example 4.5. In Theorem 4.3, our bound on t is optimal. If char k = p and $R = k[x_0, \ldots, x_n]$, then we may take $f = x_0(x_1 \cdots x_n)^{p-1}$ and $t = \frac{n}{n(p-1)+1} - \frac{n-1}{p(n(p-1)+1)} = \frac{1}{p}$. Then $\operatorname{fpt}(R, f) = \frac{1}{p-1}$, so (R, f^t) is sharply F-split. For any hyperplane $H \subseteq R$ we have $f|_H \in \mathfrak{m}|_H^{[p]}$, so $\operatorname{fpt} f|_H \leq t$. Since p divides the denominator of t, we have that $(H, f^t|_H)$ is not sharply F-split.

5. The Test Ideal at the Threshold

Example 5.1. Let $R = \mathbb{F}_p[x, y, z]$ and $f = (x^3 + y^3 + z^3)$. If $p \equiv 2 \mod 3$, then $\operatorname{fpt}(f) = 1 - 1/p$. The non-strongly F-regular locus of $(R, f^{1-1/p})$ is cut out by $\tau(R, f^{1-1/p})$. Since the coefficient of $x^{p+1}y^{p-2}z^{p-2}$ is nonzero in f^{p-1} , one can verify that $x \in \tau(R, f^{1-1/p})$, and so $\tau(R, f^{1-1/p}) = (x, y, z)$ by symmetry. But then e = d = 3, and 1 - 1/p < 1.

If we impose the additional condition that the pair is F-split at the threshold, then there is no longer any issue.

Lemma 5.2. Let k be a field of characteristic p > 0. Let $R = k[x_0, \ldots, x_n]$. Suppose $I \subseteq R$ is generated by homogeneous polynomials of degree d. Suppose $(R, I^{\operatorname{fpt}(I)})$ is sharply F-split and let $h = \operatorname{codim}(\tau(R, I^{\operatorname{fpt}(I)}))$. Suppose further that $h \ge n$. Then $\operatorname{fpt}(I) \ge h/d$.

Proof. Define the graded system of ideals \mathfrak{a}_{\bullet} by $\mathfrak{a}_m = I^{\lfloor m \operatorname{fpt}(I) \rfloor}$. Let \mathfrak{p} be a minimal prime over $\tau := \tau(R, I^{\operatorname{fpt}(I)})$. As \mathfrak{p} is a homogeneous prime ideal of codimension n or n+1, we may change coordinates so that $\mathfrak{p} = (x_0, \ldots, x_{h-1})$. By [13], Proposition 4.5 and 4.7, we have that \mathfrak{p} is uniformly $(\mathfrak{a}_{\bullet}, F)$ -compatible, so for all $e \geq 0$ we have $\mathfrak{a}_{p^e-1} \subseteq (\mathfrak{p}^{[p^e]} : \mathfrak{p}) = \mathfrak{p}^{[p^e]} + (x_0 \cdots x_{h-1})^{p^e-1}$. By assumption that $(R, I^{\operatorname{fpt}(I)})$ is sharply F-split, there exists M > 0 such that for all $e \geq 0$, $M \mid e$ we have $\mathfrak{a}_{p^e-1} \not\subseteq \mathfrak{m}^{[p^e]}$. Let $M \mid e$, and let f be a generator of \mathfrak{a}_{p^e-1} such that $f \in \mathfrak{p}^{[p^e]} + (x_0 \cdots x_{h-1})^{p^e-1} \setminus \mathfrak{m}^{[p^e]}$. Then $[\operatorname{fpt}(I)d(p^e-1)] \deg f \geq h(p^e-1)$, so $\operatorname{fpt}(I) \geq \frac{h}{d}$.

In particular, by [7, Theorem 4.1], the hypothesis that $(R, I^{\text{fpt}(I)})$ is sharply F-split is satisfied whenever I is principal and p does not divide the denominator of fpt(I).

Theorem 5.3. Suppose char k = p > 0 and $R = k[x_0, \ldots, x_n]$. Suppose that $f \in R_d$ is smooth in codimension c and p does not divide the denominator of $\operatorname{fpt}(f)$. Further suppose that $c \ge n$ or $p \ge c$. Then $\operatorname{fpt}(f) \ge \min(c/d, 1)$.

Proof. Assume $\operatorname{fpt}(f) < 1$. We will first demonstrate that $V(\tau(R, f^{\operatorname{fpt}(f)})) \subseteq \operatorname{Sing}(R/f)$. To see this, suppose \mathfrak{p} is a nonsingular point of R/f. Then in particular, $R_{\mathfrak{p}}/fR_{\mathfrak{p}}$ is F-split, so $\operatorname{fpt}(R_{\mathfrak{p}}, fR_{\mathfrak{p}}) = 1$ and $\tau(R_{\mathfrak{p}}, f^{\operatorname{fpt}(f)}R_{\mathfrak{p}}) = R_{\mathfrak{p}}$. It follows that $\mathfrak{p} \notin V(\tau(R, f^{\operatorname{fpt}(f)}))$. For $c \in \{n, n+1\}$, it follows that $\operatorname{fpt}(f) \geq \operatorname{codim}(\tau(R, f^{\operatorname{fpt}(f)}))/d \geq c/d$.

Suppose instead $c \leq n-1$ and $p \geq c$; we'll prove the claim by induction on n+1-c. Suppose for the sake of contradiction $\operatorname{fpt}(f) < c/d$. Let H be a general element of $(\mathbb{P}^n)^{\vee}$. Then $\operatorname{codim}(H, \operatorname{Sing}(f|_H)) = \operatorname{codim}(\operatorname{Spec} R, \operatorname{Sing}(f)) = c$ by Bertini's theorem. As

$$\operatorname{fpt}(f) < \frac{c}{d} \le \frac{c+1}{d} - \frac{c}{pd} \le \frac{n}{d} - \frac{c-1}{pd},$$

we have by Corollary 4.4 that $\operatorname{fpt}(f) = \operatorname{fpt}(f|_H)$. In particular, p does not divide the denominator of $\operatorname{fpt}(f)$. By induction, we conclude that $\operatorname{fpt}(f) < c/d \leq \operatorname{fpt}(f|_H) = \operatorname{fpt}(f)$, a contradiction. \Box

References

 Bhargav Bhatt and Anurag K. Singh. "The F-pure threshold of a Calabi–Yau hypersurface". en. In: *Mathematische Annalen* 362.1-2 (June 2015), pp. 551–567. ISSN: 0025-5831, 1432-1807. DOI: 10.1007/s00208-014-1129-0. (Visited on 02/18/2025).

REFERENCES

- [2] Tommaso De Fernex, Lawrence Ein, and Mircea Mustață. "Multiplicities and log canonical threshold". en. In: Journal of Algebraic Geometry 13.3 (Sept. 2004), pp. 603–615. ISSN: 1056-3911, 1534-7486. DOI: 10.1090/S1056-3911-04-00346-7. (Visited on 02/20/2025).
- [3] Lawrence Ein and Mircea Mustata. The log canonical threshold of homogeneous affine hypersurfaces. en. arXiv:math/0105113. May 2001. DOI: 10.48550/arXiv.math/0105113. (Visited on 03/26/2025).
- [4] Tommaso de Fernex, Lawrence Ein, and Mircea Mustață. "Bounds for log canonical thresholds with applications to birational rigidity". en. In: *Mathematical Research Letters* 10.2 (2003), pp. 219–236. ISSN: 10732780, 1945001X. DOI: 10.4310/MRL.2003.v10.n2.a9. (Visited on 02/20/2025).
- Branko Grünbaum. "Partitions of mass-distributions and of convex bodies by hyperplanes".
 en. In: *Pacific Journal of Mathematics* 10.4 (Dec. 1960), pp. 1257–1261. ISSN: 0030-8730, 0030-8730. DOI: 10.2140/pjm.1960.10.1257. (Visited on 02/20/2025).
- [6] Elena Guardo and Adam Van Tuyl. "Powers of complete intersections: graded Betti numbers and applications". en. In: *Illinois Journal of Mathematics* 49.1 (Jan. 2005). ISSN: 0019-2082. DOI: 10.1215/ijm/1258138318. (Visited on 02/20/2025).
- [7] Daniel J. Hernández. "\$F\$-purity of hypersurfaces". en. In: Mathematical Research Letters 19.2 (2012), pp. 389–401. ISSN: 10732780, 1945001X. DOI: 10.4310/MRL.2012.v19.n2.a11. (Visited on 03/26/2025).
- [8] Daniel J. Hernández. "F-PURITY VERSUS LOG CANONICITY FOR POLYNOMIALS". en. In: Nagoya Mathematical Journal 224.1 (Dec. 2016), pp. 10–36. ISSN: 0027-7630, 2152-6842. DOI: 10.1017/nmj.2016.14. (Visited on 02/20/2025).
- [9] Daniel J. Hernández and Pedro Teixeira. "F-threshold functions: Syzygy gap fractals and the two-variable homogeneous case". en. In: *Journal of Symbolic Computation* 80 (May 2017), pp. 451–483. ISSN: 07477171. DOI: 10.1016/j.jsc.2016.07.003. (Visited on 02/18/2025).
- [10] Daniel J. Hernández et al. "F-Pure thresholds of homogeneous polynomials". en. In: Michigan Mathematical Journal 65.1 (Mar. 2016). ISSN: 0026-2285. DOI: 10.1307/mmj/1457101811. (Visited on 02/18/2025).
- [11] Sarah Mayes. "The Limiting Shape of the Generic Initial System of a Complete Intersection".
 en. In: *Communications in Algebra* 42.5 (May 2014), pp. 2299–2310. ISSN: 0092-7872, 1532-4125. DOI: 10.1080/00927872.2012.758271. (Visited on 02/20/2025).
- S. Myroshnychenko, M. Stephen, and N. Zhang. "Grünbaum's inequality for sections". en. In: Journal of Functional Analysis 275.9 (Nov. 2018), pp. 2516–2537. ISSN: 00221236. DOI: 10.1016/j.jfa.2018.04.001. (Visited on 02/20/2025).
- [13] Karl Schwede. "Centers of F-purity". en. In: Mathematische Zeitschrift 265.3 (July 2010). arXiv:0807.1654 [math], pp. 687–714. ISSN: 0025-5874, 1432-1823. DOI: 10.1007/s00209-009-0536-5. (Visited on 02/18/2025).
- [14] Karl Schwede and Karen E Smith. Singularities defined by the Frobenius map. en. 2024.
- [15] Karl Schwede and Wenliang Zhang. "Bertini theorems for F-singularities". en. In: *Proceedings of the London Mathematical Society* 107.4 (Oct. 2013). arXiv:1112.2161 [math], pp. 851–874. ISSN: 00246115. DOI: 10.1112/plms/pdt007. (Visited on 03/21/2025).
- [16] Karen E. Smith and Adela Vraciu. "Values of the F -pure threshold for homogeneous polynomials". en. In: Journal of the London Mathematical Society 108.3 (Sept. 2023), pp. 1004–1035. ISSN: 0024-6107, 1469-7750. DOI: 10.1112/jlms.12774. (Visited on 02/18/2025).
- [17] Irena Swanson and Craig Huneke. Integral Closure of Ideals, Rings, and Modules. en.
- [18] Shunsuke Takagi and Kei-ichi Watanabe. "On F-pure thresholds". en. In: Journal of Algebra 282.1 (Dec. 2004), pp. 278–297. ISSN: 00218693. DOI: 10.1016/j.jalgebra.2004.07.011. (Visited on 02/20/2025).

[19] Siyong Tao, Zida Xiao, and Huaiqing Zuo. Bernstein-Sato roots for weighted homogeneous singularities in positive characteristic. en. arXiv:2410.20188 [math]. Oct. 2024. DOI: 10.48550/ arXiv.2410.20188. (Visited on 02/18/2025).