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Abstract. Let k be a field of characteristic zero, R = k[x1, . . . , xn], and I ⊆ R an ideal primary
to m = (x1, . . . , xn). By a 2014 result of Demailly and Pham, we have lct(I) ≥ 1

e1(I)
+ e1(I)

e2(I)
+

· · · + en−1(I)

en(I)
, where ej(I) is the mixed multiplicity e(I, . . . , I,m, . . . ,m), with I repeated j times

and m repeated n− j times. If instead char k = p > 0, we show that the F -pure threshold of (R, I)
satisfies the same lower bound. In both characteristic zero and positive characteristic, we classify
all homogeneous ideals which attain the lower bound.

Author’s Note 1.

If you found this preprint from my poster at Singularities in Algebra and Geometry 2025,
please be advised that I gave the wrong labels for the corollary and theorem.

• Corollary 3.11 on the poster is actually Corollary 3.12.
• Theorem 4.14 on the poster is actually Theorem 4.22.

A version of this preprint without this note can be found here or on my website homepage,
bbaily.github.io.

1. Introduction

We consider the log canonical threshold (lct) and F -pure threshold (fpt) of a pair (X,Y ) where
X is a smooth k-scheme and Y a subscheme supported at a point. The lct in characteristic zero and
the fpt in positive characteristic have attracted considerable attention in algebraic geometry due to
their connections with the Minimal Model Program and singularity theory. In recent years, many
authors [4, 7, 9, 10, 11, 19] have proven results comparing the lct to multiplicity-like invariants of
the pair (X,Y ).

In this paper, we consider a lower bound on the lct due to Demailly and Pham [7] in terms of
mixed multiplicities (Theorem 1.1). We show that in positive characteristic, the analogous bound
holds for fpt (Corollary 3.12). Our main contribution (Theorem 4.22) is to classify the homogeneous
pairs (X,Y ) for which the lct or fpt equals the lower bound.

Theorem 1.1 ([7], Theorem 1.2). Let (On,m) denote the ring of germs at zero of holomorphic
functions Cn → C. Let I be an m-primary ideal and let ej(I) denote the mixed multiplicity
e(I, . . . , I,m, . . . ,m) where I is repeated j times and m repeated n − j times (see Section 2.2).
Then we have

(1)
1

e1(I)
+

e1(I)

e2(I)
+ · · ·+ en−1(I)

en(I)
≤ lct(I).

Moreover, this bound is attained by the ideal I = (xd11 , . . . , xdnn ) for any d1, . . . , dn ∈ Z+.

We refer to the left-hand side of Equation (1) as the Demailly-Pham invariant of I, denoted
DP (I) (see Section 2.2). In this paper, we classify homogeneous ideals I that achieve equality in
Equation (1).

The author was supported by NSF grant DMS-2101075 and NSF RTG grant DMS-1840234.
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Theorem 4.22. Let k be an algebraically-closed field of characteristic zero. Let R =
k[x1, . . . , xn],m = (x1, . . . , xn), and let I ⊆ R be a m-primary homogeneous ideal. If DP (I) = lct(I),
then there exist integers d1, . . . , dn such that, in suitable coordinates, we have

I =
(
xd11 , . . . , xdnn

)
.

If instead char k = p > 0, then the same result holds with lct(I) replaced by fpt(I).

We briefly outline the proof of the theorem. Assume I is an ideal satisfying equality in Equa-
tion (1). Write I = I1 + · · ·+ Ir, where Ij is generated by dj-forms.

(1) Using results from [4], we control the generic initial ideals {gin(In)}n≥1.
(2) Using (1), we obtain a formula for ej(I) in terms of the numbers dj , codim(I1 + · · · + Ij),

which allows us to reduce to the case of a complete intersection.
(3) We prove the result by induction on the number of distinct degrees d1, . . . , dr.

In the case r = 1, any m-primary ideal I generated by d-forms automatically satisfies I = md, so there
is no way to use r = 1 as a useful base case for our induction. Instead, we use r = 2. In this case,
we show (Lemma 3.19) that c(I) = DP (I) if and only if c(I1) = codim(I1)/d1. As I = I1 +md2 ,
it suffices to show that I1 = (x1, . . . , xcodim(I))

d1 in suitable coordinates. In characteristic zero, this
follows from [10, Theorem 3.5]. In positive characteristic, this fact is recorded below.

Theorem 1.2 ([1], Theorem 3.17). Let k be a field of characteristic p > 0. Let I be a homogeneous
ideal in k[x1, . . . , xn] generated by polynomials of degree d and set h = codim(I). Suppose that k is
algebraically-closed. Then fpt(I) = h/d if and only if I = (x1, . . . , xh)

d up to change of coordinates.

2. Preliminaries

2.1. F -Pure and Log Canonical Thresholds. We begin with a formal definition of the lct. For
a detailed introduction, see [20].

Definition 2.1 (Log Resolution). Let X be a smooth variety over a characteristic zero field with
Y ⊆ X a proper closed subvariety with defining ideal a. Let W be a smooth variety. A projective
morphism π : W → X is a log resolution of (X,Y ) if π is an isomorphism over X \Y and the inverse
image a · OW is the ideal of a Cartier divisor D such that D +KW/X has simple normal crossings.

The following result gives a concise definition of the lct.

Definition 2.2 (Log canonical threshold, [20] Theorem 1.1). Let X be a smooth variety with Y ⊆ X
a closed subvariety with defining ideal a. By Hironaka’s theorem on resolution of singularities in
characteristic zero, there exists a log resolution π : W → X of the pair (X,Y ). If E1, . . . , EN are
the exceptional divisors of π, then we can write

D =

N∑
i=1

aiEi and KW/X =

N∑
i=1

kiEi.

The quantity mini
ki+1
ai

does not depend on π and is called the log canonical threshold of (X,Y ).

For detailed background on the F -pure threshold, we direct the reader to [24, 25]. In this
subsection, we summarize several key definitions and results.

Definition 2.3. Let R be a ring of characteristic p > 0. We let F∗R denote the R-module structure
on R given by restriction of scalars along the Frobenius map F : R → R. We say R is F -finite if
F∗R is module-finite over R.
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Definition 2.4 ([24]). Let R be an F -finite ring, I ⊆ R an ideal, and t ∈ R+. The pair (R, It) is
sharply F -split if for some (equivalently, infinitely many) e > 0, the map

I⌈t(p
e−1)⌉ ·Hom(F e

∗R,R) → R

is surjective.

Definition 2.5 ([25]). The F -pure threshold of the pair (R, I) is the supremum of all t such that
(R, It) is sharply F -split. We denote this quantity by fpt(R, I), or fpt(I) when the ambient ring is
clear.

In practice, we do not use the above definitions. Instead, we use the following two propositions
characterizing lct and fpt respectively.

Proposition 2.6. Let (R,m) be an F -finite regular local ring. Then the F -pure threshold of the
pair (R, It) is equal to

sup

{
ν

pe
: Iν /∈ m[pe]

}
.

In fact, let νI(pe) = max{r : Ir /∈ m[pe]}. Then the F -pure threshold of (R, a) is equal to the limit
lime→∞ νI(p

e)/pe. If instead R is a polynomial ring over an F -finite field and I ⊆ R a homogeneous
ideal, then the same results hold when we let m denote the homogeneous maximal ideal of R.

Proof. The first claim follows from [25, Lemma 3.9]. The existence of the limit is [22, Lemma 1.1].
For the graded setting, see [5, Proposition 3.10]. □

Proposition 2.7 ([13], Theorem 6.8). Let A be a finite-type Z-algebra and a ⊆ A[x1, . . . , xn] an
ideal. Set k = Frac(A). Then we have

lct(k[x1, . . . , xn], a⊗A k) = lim
µ∈maxSpecA,|A/µ|→∞

fpt(A/µ[x1, . . . , xn], a⊗A A/µ).

Many of our results make sense for both fpt and lct, so we introduce the following notation to
avoid stating the same results once each for characteristic zero and positive characteristic.

Notation 2.8. Let R = k[x1, . . . , xn] and I ⊆ R a homogeneous ideal. We define the quantity
c(R, I) as follows:

c(R, I) =

{
fpt(R, I) char R = p > 0

lct(R, I) char R = 0
.

If the ambient ring is clear, we will use c(I) for short.

We will require the following essential facts.

Proposition 2.9 (Properties of the singularity threshold). Let R = k[x1, . . . , xn]. Then for all
ideals I ⊆ R such that I contains a nonzerodivisor, we have

(i) If I ⊆ J , then c(I) ≤ c(J).
(ii) For all m > 0, we have c(Im) = m−1c(I).
(iii) We have c(I) = c(I), where I denotes the integral closure of I.

Proof. For characteristic zero, see [20, Properties 1.12, 1.13, 1.15]. For characteristic p > 0, see [25,
Proposition 2.2 (1), (2), (6).] □

Proposition 2.10. Let R = k[x1, . . . , xn]. Let > be a monomial order. Let I ⊆ R be an ideal, and
in>(I) the initial ideal of I with respect to >. Then c(in>(I)) ≤ c(I).

Proof. For characteristic zero, see [6] for the semicontinuity of the lc threshold. For positive char-
acteristic, see [25], the claim preceding Remark 4.6. □
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2.2. Mixed Multiplicities and the Demailly-Pham Invariant. To begin, we recall the defini-
tion of the mixed multiplicity symbol e(I1, . . . , Id;M).

Definition 2.11. Let M be a finite-length R-module. We let λR(M) denote the length of M as an
R-module.

Theorem 2.12 ([17], Theorem 17.4.2). Let (R,m) be a Noetherian local ring, I1, . . . , Ik ideals of R
primary to m, and M a finitely-generated R-module. Then there exists a polynomial P (n1, . . . , nk)
with rational coefficients and total degree at most dimR such that for all n1, . . . , nk ≫ 0, we have

P (n1, . . . , nk) = λR

(
M

In1
1 . . . Ink

k M

)
.

Remark 2.13. Suppose instead that S is a Noetherian ring, not necessarily local, and n is any
maximal ideal of S. If I1, . . . , Ik are n-primary ideals in S, then In1

1 · · · Ink
k is n-primary for all

n1, . . . , nk > 0. Consequently, we have

λS

(
S

In1
1 · · · Ink

k S

)
= λSn

(
Sn

In1
1 · · · Ink

k Sn

)
for all n1, . . . , nk, so Theorem 2.12 holds for I1, . . . , Ik without assuming that S is local.

Definition 2.14 (Mixed Multiplicity). Let (R,m) be a Noetherian local ring of dimension d. Let
I1, . . . , Ik be m-primary ideals of R. Let Q(n1, . . . , nk) denote the degree-d part of P (n1, . . . , nk).
The coefficients of Q define the mixed multiplicities e(I

⟨d1⟩
1 , . . . , I

⟨dk⟩
k ;M):

(2) Q(n1, . . . , nk) =
∑

d1+···+dk=d

(
d

d1, . . . , dk

)−1

e(I
⟨d1⟩
1 , . . . , I

⟨dk⟩
k ;M)

The expression e(I
⟨d1⟩
1 , . . . , I

⟨dk⟩
k ;M) is shorthand for the expression e(I1, . . . , I1, . . . , Ik, . . . , Id;M),

where Ij is repeated dj times.

Remark 2.15. Other authors, such as [17], have used the notation e(I
[d1]
1 , . . . , I

[dk]
k ;M) instead. To

avoid confusion with the Frobenius powers of the ideals Ij , we use angle brackets in the exponent.

We now define the mixed multiplicities ej(I).

Definition 2.16. Let (R,m) be a Noetherian local ring of dimension d and let I denote an m-
primary ideal. We define

ej(I) = e(I⟨j⟩,m⟨d−j⟩;R).

Suppose instead R = k[x1, . . . , xn] is a polynomial ring over a field. Let m denote the homogeneous
maximal ideal of R, and let I be an m-primary ideal. By Remark 2.13, the function λR(R/In1mn2R)
is a polynomial for n1, n2 ≫ 0. We may therefore define ej(I) in terms of this polynomial, and this
definition agrees with the quantity ej(IRm).

We record a few basic properties of the numbers ej(I) in a polynomial ring.

Proposition 2.17. Let R = k[x1, . . . , xn]. Let m denote the homogeneous maximal ideal of R, and
let I be an m-primary ideal.

(i) We have e0(I) = 1, e1(I) = ordm(I), and en(I) = e(I).
(ii) The sequence e0(I), . . . , en(I) is log convex.
(iii) If h1, . . . , hn are general 1-forms, then for all 0 ≤ j ≤ n we have ej(I) = e

(
I+(h1,...,hn−j)
(h1,...,hn−j)

)
,

where e(−) denotes the usual Hilbert multiplicity.

Proof.
(i): Follows from (iii).
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(ii): See [17], Theorem 17.7.2.
(iii): See [17], Corollary 17.4.7.

□

We will now define the Demailly-Pham invariant, first defined in [7] and named in [4].

Definition 2.18. Let R = k[x1, . . . , xn], m the homogeneous maximal ideal of R, and I an m-
primary ideal. Then we set

DP (I) :=
1

e1(I)
+ · · ·+ en−1(I)

en(I)
.

This invariant satisfies a property similar to Theorem 2.37.

Proposition 2.19. Assume the setting of Definition 2.18, and let I1, I2 be m-primary ideals. Then
DP (I1) ≤ DP (I2) with equality if and only if I1 = I2.

Proof. This holds in much greater generality due to [4], Corollary 11. We need only that R is
quasi-unmixed. □

2.3. Analytic Perspectives on the Log Canonical Threshold.

Definition 2.20. Let 0 ∈ Ω ⊆ Cn be a bounded hyperconvex domain (e.g. a ball). Let φ : Ω →
R ∪ {−∞} be a plurisubharmonic (psh) function. The log canonical threshold of φ at 0 is given by

lct(φ) = sup{s > 0 : e−2cφ is L1 on a neighborhood of 0}.
The fact that the invariants in Definitions 2.2 and 2.20 are both called the log canonical threshold

is owed to the following proposition.

Proposition 2.21. Let a ⊆ C[x1, . . . , xn] be an ideal primary to (x1, . . . , xn). Let f = f1, . . . , fr be
a generating set for a and set φf = log(|f1|2 + · · ·+ |fr|2). Then φf is psh and lct(a) = lct(φf ).

Proof. Follows from [20, Theorem 1.2]. □

Definition 2.22 ([7]). Let 0 ∈ Ω ⊆ Cn and let φ be a psh function on Ω which is locally bounded
outside isolated singularities (or slightly more generally, see [op. cit.]). For 0 ≤ j ≤ n, we define
the intersection numbers

ej(φ) =

∫
{0}

(
i

π
∂∂φ

)j

∧
(
i

π
∂∂ log |z|

)n−j

.

The setup of Definition 2.22 is the original setting in which Demailly and Pham worked.

Theorem 2.23. Let Ω, φ be as in Definition 2.22. Then lct(φ) = ∞ if and only if e1(φ) = 0 and,
otherwise,

c(φ) ≥
n−1∑
j=0

ej(φ)

ej+1(φ)
.

Remark 2.24. When a, f , φ are as in Proposition 2.21, the mixed multiplicity ej(a) coincides
with the intersection number ej(φf ). Applying the above result fo φ = φf , one obtains the result
DP (a) ≤ lct(a) of Theorem 1.1.

In [4], Bivià-Ausina considers the lct in the context of the ring of germs at 0 of holomorphic
functions Cn → C.

Definition 2.25. Let (On,m) denote the ring of germs at 0 of holomorphic functions Cn → C. If
f = f1, . . . , fr and J = (f) ⊆ On, then the lct of J is defined as

lct(J) = lct(φf ).

The numbers ej(J) can equivalently be defined as ej(φf ) or as the mixed multiplicity e(J ⟨j⟩,m⟨n−j⟩).
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Biviá-Ausina’s main result is the following.

Theorem 2.26 ([4], Theorem 13). Let R = (On,m) and I an m-primary ideal. Fix coordinates
z1, . . . , zn for On. In the coordinates z1, . . . , zn, let I0 denote the smallest integrally-closed monomial
ideal containing I. Then the following are equivalent:

(i) There exist integers d1, . . . , dn such that I = (zd11 , . . . , zdnn );
(ii) lct(I0) = DP (I);
(iii) lct(I) = DP (I) and lct(I) = lct(I0).

Remark 2.27. There is a bijection between m-primary ideals of On and (x1, . . . , xn)-primary ideals
of C[x1, . . . , xn] which preserves both DP and lct, so the settings On,C[x1, . . . , xn] are equivalent
in our context.

2.4. Newton Polytopes of Monomial Ideals. When working with monomial ideals, one often
identifies a monomial xa00 · · ·xann with the point (a0, . . . , an) ∈ Zn+1

≥0 . For future reference, it will
help to give a name to this identification.

Definition 2.28. Let k be a field. We define the map

log : {monomials in k[x0, . . . , xn]} → Zn+1
≥0 , log(xa00 · · ·xann ) = (a0, . . . , an).

Definition 2.29. Let a ⊆ k[x0, . . . , xn] be a monomial ideal. Then the Newton Polytope of I,
denoted Γ(a), is the convex hull in Rn+1 of log(a). Later on, we will let conv(−) denote the convex
hull of a set.

Remark 2.30. We record several properties of Γ(a).

(i) Γ(a) is a closed, convex, unbounded subset of the first orthant of Rn.
(ii) When a is an m-primary ideal, the complement of Γ(a) inside the first orthant is an open,

bounded polyhedron.
(iii) For two ideals a, b, the Minkowski sum of Γ(a) and Γ(b) is equal to Γ(ab). In particular,

Γ(an) = nΓ(a).

Definition 2.31. Let I ⊆ k[x0, . . . , xn] be a homogeneous ideal and t ∈ Z+. We let [I]t denote the
vector space of t-forms in I.

The following proposition shows that Newton polytope of a monomial ideal determines the F -pure
threshold.

Proposition 2.32. Let a ⊆ k[x1, . . . , xn] be a monomial ideal. Then

c(a) =
1

µ
, where µ = inf{t : t⃗1 ∈ Γ(a)}.

Proof. See [16], Example 5 for characteristic zero and [14], Proposition 36 for prime characteristic.
□

Following the proof of [11], Theorem 1.4 and the terminology of [18], we also define the limiting
polytope of a graded system of monomial ideals.

Definition 2.33. Let a• be a graded system of monomial ideals. That is, suppose aras ⊆ ar+s for
all r, s ∈ Z+. We define Γ(a•) as the closure in Rn+1 of the ascending union { 1

2mΓ(a2m)}m>0.

Definition 2.34. Let > be a monomial order on R. We set Γ>(I) = Γ(a•), where an = in>(I
n).
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2.5. Integral Closure of Ideals.

Definition 2.35. Let I be an ideal in a ring R. An element r ∈ R is integral over I if there exists
an integer n and elements a1, . . . , an, ai ∈ Ii such that

rn + a1r
n−1 + · · ·+ an.

We then define the integral closure I of I as the set of elements r ∈ R which are integral over I.

Those hoping for an exhaustive discussion of the integral closure of ideals should consult [17].
For now, we will list some basic properties of I.

Proposition 2.36 (Properties of the Integral Closure, [17] Chapter 1). Let R be a ring and I ⊆ R
an ideal. Let φ : R → S. Then we have

(i): I is an ideal.
(ii): (I) = I.
(iii): IS ⊆ IS.
(iv): If J ⊆ S is an ideal, then φ−1(J) = φ−1(J).
(v): For any multiplicatively-closed subset W ⊆ R, we have W−1I = W−1I.
(vi): The integral closure of a monomial ideal a in a polynomial ring k[x0, . . . , xn] is generated by

the set xα : α ∈ Γ(a).
(vii): If φ is faithfully flat or an integral extension, then IS ∩R = I.

Integral closure is an operation which respects many numerical invariants we are interested in
this paper.

Theorem 2.37 ([17], Proposition 11.2.1, Theorem 11.3.1). Let (R,m) be a formally equidimensional
local ring and I ⊆ J two m-primary ideals. Then e(I) = I(J) if and only if I = J .

The same result, of course, holds in the case that (R,m) is instead standard-graded.

Proposition 2.38. Let I ⊆ k[x1, . . . , xn] be an ideal. Then c(I) = c(I).

Proof. For characteristic zero, see [20], Property 1.15. For positive characteristic, see [25], Proposi-
tion 2.2 (6). □

2.6. Essential Dimension.

Definition 2.39 (Essential Dimension). Let J ⊆ R = k[x1, . . . , xd] be a homogeneous ideal. The
essential dimension ess(J) is equal to the minimal r for which there exist linear forms ℓ1, . . . , ℓr such
that J is extended from I ⊆ k[ℓ1, . . . , ℓr].

We have the following result.

Proposition 2.40 ([1], Proposition 3.3). Let k be an algebraically-closed field, R = k[x0, . . . , xn],
and J ⊆ R a homogeneous ideal. Set r = codim(J). Let L = (ℓr+1, . . . , ℓn), where the ℓi are chosen
generally. For r ≤ t ≤ n, set Lt = (ℓt+1, . . . , ℓn) and Jt =

J+Lt
Lt

. Then for all r ≤ t ≤ n, we have
ess(Jt) = max(t+ 1, ess(J)).

3. The Limiting Polytope

3.1. Complete Intersections in Positive Characteristic. In this subsection, we prove [18,
Theorem 1.1] over a field of characteristic p > 0. While the main argument is nearly identical,
some intermediate lemmas must be weakened. In particular, [18, Lemma 3.6] is false in positive
characteristic, which is evident by considering the generic initial ideal of (xp, yp) ⊆ k[x, y] for an
infinite field k of characteristic p > 0. For the sake of self-containedness, we will sketch the entire
adapted argument here.
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Lemma 3.1. Let k be a field, R = k[x1, . . . , xn], and J ⊆ R a homogeneous ideal. Let 1 ≤ j ≤ n
and define πj : R → R/(xj+1, . . . , xn) ∼= k[x1, . . . , xj ]. If > denotes the reverse lexicographic order,
then

in> πj(J) = πj(in>(J)).

Proof. Let f ∈ J be a homogeneous element. Write f = g + h, where h ∈ (xj+1, . . . , xn) and
g ∈ k[x1, . . . , xj ]. If g = 0, then πj(f) = 0. If g ̸= 0, then in>(f) = in>(g). In both cases, we have
πj(in>(f)) = in>(πj(f)). □

Definition 3.2. Let k be an infinite field. Let R = k[x1, . . . , xn] and let > denote the reverse
lexicographic order. Let I = (f1, . . . , fn) be a complete intersection ideal, where fi is homogeneous
of degree di and d1 ≤ · · · ≤ dn. For 1 ≤ j ≤ n, let Ij := (f1, . . . , fj). For 1 ≤ j ≤ n, let
πj : R → R/(xj+1, . . . , xn) ∼= k[x1, . . . , xj ] denote the projection map. Let gm ∈ GLn(k) be a general
linear transformation such that (g−1

m )(xj+1, . . . , xn) is regular on R/Imj and in>(gmImj ) = gin>(I
m
j )

for all 1 ≤ j ≤ n.

Lemma 3.3. Assume the setting of Definition 3.2. For all 1 ≤ j ≤ n,m > 0, we have gin>(I
m) =

(in>(πj(gmImj )))R.

Proof. Since Ij is a complete intersection, Imj is Cohen-Macaulay for all m > 0, hence codim(Imj ) =

depth(Imj ) = j. Consequently, by [15, Lemma 3.1], the generators of gin>(I
m
j ) are contained in

k[x1, . . . , xj ], so πj(gin>(I
m
j ))R = gin>(I

m
j ). By Lemma 3.1, we have

gin>(I
m
j ) = πj(gin>(I

m
j ))R = πj(in>(gmImj ))R = (in>(πj(gmImj )))R.

□

The following is a general lemma which will be used repeatedly throughout the rest of this article.

Lemma 3.4. Let L be a field, S = L[x1, . . . , xn], and J ⊆ S an m-primary homogeneous ideal
generated by forms of degree ≤ d. Then md ⊆ J .

Proof. We first prove the result in the case that L is infinite. First, choose forms f1, . . . , fn from
among the generators of J such that (f1, . . . , fn) is m-primary. If h1, . . . , hn are general linear forms,
then

J ′ := (h
d−deg(f1)
1 f1, . . . , h

d−deg(fn)
n fn)

is an m-primary (d, . . . , d)-complete intersection contained in J . As J ′ ⊆ md and e(J)′ = dn = e(md),
we have md = md ⊆ J ′ ⊆ J by Theorem 2.37.

Now, let L be an arbitrary field, and set S′ = L[x1, . . . , xn]. By Proposition 2.36 (vii) and the
infinite field case, we have J = JS′ ∩ S ⊇ mdS′ ∩ S = md. □

Lemma 3.5. Assume the setting of Definition 3.2. Then for all 1 ≤ j ≤ n,m > 0 we have
x
(m+j−1)dj
j ∈ gin>(I

m
j ).

Proof. By Lemma 3.3, it suffices to prove the result when j = n. Let m denote the homogeneous
maximal ideal of R. By Lemma 3.4, we have mdn ⊆ I. By the Briançon-Skoda theorem, we have
m(m+n−1)dn ⊆ I

m+n−1 ⊆ Im. It follows that

x(m+n−1)dn
n ∈ m(m+n−1)dn = gmm(m+n−1)dn ⊆ in>(gmIm) = gin>(I

m).

□

Proposition 3.6. Assume the setting of Definition 3.2. Let a• be the graded system of ideals given
by am = gin(Im). Then

(3) Rn
≥0 \ Γ(a•) = conv

(
0⃗, (d1, 0, . . . , 0) , (0, d2, 0, . . . , 0) , . . . , (0, . . . , 0, dn)

)
.



CLASSIFICATION OF MINIMAL SINGULARITY THRESHOLDS 9

Proof. By Lemma 3.5, we have

(4) conv
(
0⃗, (d1, 0, . . . , 0) , (0, d2, 0, . . . , 0) , . . . , (0, . . . , 0, dn)

)
⊆ Rn

≥0 \ Γ(a•).

As e(I) = d1 . . . dn, we also have vol(Rn
≥0 \ Γ(a•)) = (d1 . . . dn)/n! by [21, Theorem 1.7]. It follows

that the containment in Equation (4) is in fact equality. □

Corollary 3.7. Assume the setup of Definition 3.2 and let r < n. Let J = (f1, . . . , fr) and for
m > 0 set am := gin>(J

m). Then we have

(5) conv
(
0⃗, (d1, 0, . . . , 0) , (0, d2, 0, . . . , 0) , . . . , (0, . . . , 0, dr, 0, . . . , 0)

)
= Rn

≥0 \ Γ(a•).

Proof. Follows from and Lemma 3.3 and Proposition 3.6. □

3.2. F -Pure Thresholds and the Demailly-Pham Invariant. In this subsection, we require
an asymptotic version of Theorem 2.26 in arbitrary characteristic. Only minor refinements of Bivià-
Ausina’s arguments are needed.

Lemma 3.8. Let k be an infinite field, R = k[x1, . . . , xn], and I an m-primary homogeneous ideal.
If > denotes the reverse lexicographic order, then for all 1 ≤ j ≤ n we have

lim
t→∞

ej(gin>(I
t))

tj
= ej(I).

This result was shown by Bivià-Ausina [4, Theorem 4] in the related setting where R = On and
where > denotes the negative lexicographic order.

Proof. Without loss of generality, we first extend k to an uncountably infinite field; this changes
neither the hypothesis nor the conclusion.

If J ⊆ R is an m-primary homogeneous ideal and h1, . . . , hn is a sequence of linear forms, we say
that a h1, . . . , hn computes e•(J) if for 1 ≤ j ≤ n, we have

ej(J) = e

(
J + (h1, . . . , hn−j)

(h1, . . . , hn−j)

)
.

For m > 0, we define:
• Um is the open subset of GLn(k) such that in>(gI

m) is constant for all g ∈ Um, such that
Um meets nontrivially the unipotent subgroup of upper triangular matrices with ones along
the diagonal, and such that U is fixed by the Borel subgroup of upper-triangular matrices.

• Vm is the open subset of GLn(k) for which gxn, . . . , gx1 computes e•(I
m).

• Wm is the open subset of GLn(k) for which gxn, . . . , gx1 computes e•(g′(Im)), where g′ ∈ Um

is arbitrary.
Nonemptiness of Um is [8, Theorem 15.18]. Nonemptiness of Vm,Wm follows from Proposition 2.17.
Since k is uncountable, we may choose g ∈

⋂
m>0(Um ∩ Vm ∩ Wm). Set J = (g−1)∗I, and for

1 ≤ j ≤ n, let πj : R → R/(xj+1, . . . , xn). We then have

ej(I) = e(πj(J)) = lim
m→∞

1

mj
e(πj(J

m))

= lim
m→∞

1

mj
e(in>(πj(I

m))) = lim
m→∞

1

mj
e(πj(in>(I

m)))

= lim
m→∞

1

mj
ej(in>(J

m)).

The first and fifth equalities follow the fact that x1, . . . , xn computes e•(J
m) and e•(in>(J

m)) for
all m ≥ 1. The second follows from the equality e(πj(J

m) = e(πj(J)
m) = mje(πj(J)). The third is

from [21, Corollary 1.13], and the fourth is from Lemma 3.1. □
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Definition 3.9. Let k be an infinite field, R = k[x1, . . . , xn],m = (x1, . . . , xn), and let a• be a
graded system of m-primary ideals. We define:

• The asymptotic mixed multiplicities: ej(a•) = lim infm
ej(am)
mj .

• The asymptotic Demailly-Pham invariant: DP (a•) =
1

e1(a•)
+ · · ·+ en−1(a•)

en(a•)

• The asymptotic singularity threshold: c(a•) = lim infmmc(am).

Before we prove our asymptotic version of Theorem 2.26, we require the following standard facts.

Lemma 3.10. Let L be a field and S = L[x1, . . . , xn]. Let I be a homogeneous ideal of S and J ⊆ I
denote the ideal of S generated by the homogeneous forms in I of degree ≤ d. If codim(J) = n, then
J = I.

Proof. It is clear that J ⊆ I. Let m := (x1, . . . , xn). For the reverse containment, note that
I ⊆ J +md+1. By Lemma 3.4 we have

I ⊆ J +md+1 ⊆ J +md ⊆ J.

□

Lemma 3.11. Let L be a field and S = L[x1, . . . , xn]. Let J = (f1, . . . , fn) be a complete intersection
where deg fi = di and d1 ≤ · · · ≤ dn. Then we have the following:

(i) If L is infinite, then for a general hyperplane section H ⊆ SpecR, we have e(I|H) =
d1 · · · dn−1.

(ii) With no assumption on |L|, we have DP (I) = 1
d1

+ · · ·+ 1
dn

.

Proof. For (i), we note that for a general hyperplane section H, we have that (f1, . . . , fn−1)|H is
m-primary. By Lemma 3.4, we have (m|H)dn−1 ⊆ (f1, . . . , fn−1)|H . As fn ∈ (m|H)dn−1 , we have
(f1, . . . , fn−1)|H = J |H . Consequently, e(J |H) = e(J |H) = d1 · · · dn−1.

For (ii), we note that DP (J) is invariant under extension of the base field, so it suffices to consider
the case of an infinite field. But then the result follows from (i) and Proposition 2.17 (iii). □

Corollary 3.12. Let k be an infinite field, R = k[x1, . . . , xn], and I an m-primary homogeneous
ideal. Then DP (I) ≤ c(I). Moreover, let > denote the reverse lexicographic order. Suppose
DP (I) = c(I). Letting am := gin>(I

m), we have

(6) Rn
≥0 \ Γ(a•) = conv

(
0⃗, (e1(I), 0, . . . , 0) ,

(
0,

e2(I)

e1(I)
, 0, . . . , 0

)
, . . . ,

(
0, . . . , 0,

en(I)

en−1(I)

))
.

Proof. By Lemma 3.8 we have DP (a•) = DP (I) and by Proposition 2.10 we have c(a•) ≤ c(I). Let
µ = inft : (t, . . . , t) ∈ Γ and set µ⃗ = (µ, . . . , µ). Since Γ is convex and µ ∈ ∂Γ, by [23, Corollary
11.6.1] there exists a half-space H+ ⊆ Rn such that Γ ⊆ H+ and that µ ∈ ∂H+. Since Γ is
closed under translation by elements of Rn

≥0 and the complement of Γ in Rn
≥0 is bounded, the same

is true for H−. Consequently, the complement of H− in Rn
≥0 is a simplex which we denote by

conv(0, (b1, 0, . . . , 0), . . . , (0, . . . , 0, bn)).
Define a graded system of monomial ideals b• by bm = {xα : α ∈ mH+}. By assumption that

Γ ⊆ H+, we have am ⊆ bm for all m. Consequently, we have DP (a•) ≤ DP (b•) by Proposition 2.19.
By Proposition 2.32, we also have c(b•) = c(a•). Altogether, we have

DP (I) = DP (a•) ≤ DP (b•) =
1

b1
+ · · ·+ 1

br
= c(b•) = c(a•) ≤ c(I).

Now suppose DP (I) = c(I). Then we also have DP (a•) = DP (b•). By [4, Proposition 10], we
further have that ej(I) = ej(a•) = ej(b•) for all 1 ≤ j ≤ n. In particular, en(a•) = en(b•), so by
[21, Theorem 2.12 and Lemma 2.13], we have vol(Rn

≥0 \ Γ(a•)) = (Rn
≥0 \ Γ(b•)). Since Γ(a•),Γ(b•)

are closed and convex with positive volume, it follows that Γ(a•) = Γ(b•).
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Since the generic initial ideal is Borel-fixed, we have b1 ≤ · · · ≤ bn. Consequently, we can compute
ej(b•) in terms of the numbers bj : we have(

x
⌊mb1⌋
1 , . . . , x

⌊mbn⌋
n

)
⊆ bm ⊆

(
x
⌈mb1⌉
1 , . . . , x

⌈mbn⌉
n

)
.

It follows that ej(b•) = b1 · · · bj . As ej(I) = ej(b•), the result follows. □

Remark 3.13. The condition Equation (6) is necessary to have c(I) = DP (I), but not sufficient.
By [18] in characteristic zero or Proposition 3.6 in positive characteristic, Equation (6) holds for
any homogeneous complete intersection J = (f1, . . . , fn).

3.3. Behavior of the Threshold Under Modifications. In this section, fix the following nota-
tion.

Definition 3.14. Let k be a characteristic zero field, R = k[x1, . . . , xn], and let m denote the
homogeneous maximal ideal. Let I ⊆ R be an m-primary homogeneous ideal. Write I = I1+· · ·+Ir,
where Ij is generated by forms of degree dj and d1 < · · · < dj .

Let A ⊆ k be a finitely-generated Z-algebra and J ⊆ A[x1, . . . , xn] an ideal such that JR = I.
Such a subring A can always be constructed by adjoining to Z the field coefficients appearing in a
generating set for I. If µ is a maximal ideal of A, we let Iµ denote the image of J in (A/µ)[x1, . . . , xn],
and we write Iµ = I1,µ + · · ·+ Ir,µ.

Lemma 3.15 ([2], Lemma 3.2). Let R = k[x1, . . . , xn] and let m denote the homogeneous maximal
ideal. For any e, t ∈ Z+, we have

(m[pe] : mt) =

{
R t ≥ npe − n+ 1

m[pe] +mnpe−n+1−t t < npe − n+ 1

More generally, we have the following.

Lemma 3.16. Let R = k[x1, . . . , xn]. Let v be a monomial valuation on R with v(xi) ≥ 0 for all
1 ≤ i ≤ n. For λ ∈ R+, let aλ denote the ideal {f ∈ R : v(f) ≥ λ} and a+λ = {f ∈ R : v(f) > λ}.
Let q ∈ Z+, λ ∈ R+. Then we have

(7) ((xq1, . . . , x
q
n) : aλ) = (xq1, . . . , x

q
n) + a+(q−1)v(x1...xn)−λ.

Proof. The argument is the same as Lemma 3.15. Let m /∈ (xq1, . . . , x
q
n) be a monomial. Then

m | (x1 · · ·xn)q−1, so

aλm ̸⊆ (xq1, . . . , x
q
n) ⇐⇒ (x1 . . . xb)

q−1

m
∈ aλ ⇐⇒ v((x1 · · ·xn)q−1)− v(m) ≤ λ.

We’ve shown that the two sides of Equation (7) contain the same monomials; both sides are mono-
mial ideals, so the result follows. □

Lemma 3.17 ([1], Lemma 4.2). Let k be a field of characteristic p > 0, let R = k[x1, . . . , xn], and
I ⊆ R a homogeneous ideal. For a hyperplane H cut out by a linear form ℓ, we let I|H denote the
image of I in R/ℓR. In this case, we have

(8) νI|H (p
e) ≤ max{r : Ir ̸⊆ m[pe] +m(n−1)(pe−1)+1},

Corollary 3.18. Assume the setup of Definition 3.14 and let H ⊆ SpecR be a hyperplane. Then
c(I)− c(I|H) ≥ 1/dr.

For all µ ∈ SpecA, we have c(Iµ)− c(Iµ|Hµ) ≥ 1
dr

, and consequently, c(I)− c(I|H) ≥ 1/dr.

Proof. We first prove the claim in characteristic p > 0. Combining Lemma 3.15 and Lemma 3.17,
we have

νI|H (p
e) ≤ max{s : mpeIs ̸⊆ m[pe]}.
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By Lemma 3.4, we have mdr ⊆ I, so max{s : mpeIs ̸⊆ m[pe]} ≤ νI(p
e) −

⌊
pe

dr

⌋
, so we have

νI|H (p
e) ≤ νI(p

e)−
⌊
pe

d

⌋
. Dividing by pe and taking the limit as e → ∞ gives the result.

In characteristic 0, we have

c(I)− c(I|H) = lim
µ∈SpecA

charA/µ→∞

c(I|µ)− c(Iµ|Hµ) ≥ 1/dr.

□

Lemma 3.19. Assume the setup of Definition 3.14. Suppose r = 2. Then we have c(I) = n
d2

+

c(I1)
d2−d1
d2

. In particular, for any 0 ≤ s ≤ n, we have c(I) = s
d1

+ n−s
d2

if and only if c(I1) = s
d1

.

Proof. We prove the claim first in positive characteristic. By Lemma 3.4, we have md2 ⊆ I, so
I ⊆ I1 +md2 ⊆ I, so c(I) = c(I1 +md2). Consequently, we have

νI(p
e) = max

{
a+ b : Ia1m

bdn
µ ̸⊆ m[pe]

}
= max{a+ b : Ia1 ̸⊆ (m[pe]

p : mbdn
p )}.

By Lemma 3.15, this is equivalent to

(9) νI(p
e) = max{a+ b : Ia1 ̸⊆ m[pe] +mnpe−n+1−bd2} = max

0≤a≤νI1 (p
e)
a+

npe − n+ 1− ad1
d2

.

The quantity being maximized in Equation (9) is an increasing function of a, so the maximum
occurs at a = νI1(p

e) and

νI(p
e) =

npe − n+ 1

d2
+ νI1(p

e)
d2 − d1

d2
.

Dividing by pe and letting e → ∞, we obtain

c(I) =
n

d2
+ c(I1)

d2 − d1
d2

.

For characteristic zero, we compute

c(I) = sup
µ

c(Iµ) = sup
µ

(
n

d2
+ c(I1,µ)

d2 − d1
d2

)
=

n

d2
+ c(I)

d2 − d1
d2

.

□

The final lemma of this section is a trivial combination of facts from the preliminary section, but
we will use it repeatedly and so we state it here.

Lemma 3.20. Let I ⊆ R be an ideal and > a monomial partial order. If J ⊆ in>(I), then
c(J) ≤ c(I).

Proof. Follows from Propositions 2.9 and 2.10. □

4. Proof of Theorem 4.22 in the Complete Intersection Case

Assumption 4.1. We assume a setup similar to Definition 3.14. Let k be an algebraically-closed
field. Let a1, . . . , ar, d1, . . . , dr ∈ Z+. For 1 ≤ i ≤ r, let xi denote the tuple of variables xi,1, . . . , xi,ai ,
and let R = k[x1, . . . ,xr]. Let I ⊆ R be a complete intersection of the form (f1,1, . . . , fr,ar) such
that fi,j is a di-form. For 1 ≤ j ≤ r, write Ij = (fj,1, . . . , fj,aj ). Let v denote the monomial

valuation with v(xi,j) = 1/di. We let D denote the ideal (xd1
1 , . . . ,xdr

r ), which coincides with the set
of elements of valuation v(−) ≥ 1.

Assumption 4.2. Assume the setup of Assumption 4.1. We define the following condition on the
ideal I:

(10) I1 is extended from k[x1] and I ⊆ D+ (x1).
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Definition 4.3. For r ∈ Z+, we define the statements Ar, Br.
For all I as in Assumption 4.1, if DP (I) = c(I) then there exists g ∈ GLn(k)

such that gI ⊆ D.
(Ar)

For all I as in Assumption 4.1, if DP (I) = c(I) then there exists g ∈ GLn(k)

such that gI satisfies Equation (10).
(Br)

The goal of this section is to prove Ar for all r. We accomplish this via the following steps:
(1) A1, A2 hold
(2) For r ≥ 3, A2, Ar−1 =⇒ Br

(3) For r ≥ 3, Ar−1, Br together imply Ar.

4.1. Step (1): A1, A2 hold.

Proof of A1. If I is an m-primary complete intersection generated by forms of degree d for some d,
by Lemma 3.4 we have I = md. □

When r = 1, the hypothesis c(I) = DP (I) is satisfied for all choices of I, so we are not able to
use A1 as a useful base case.

Proof of A2. By Lemma 3.19, if c(I) = DP (I) then c(I1) = a1/d1. By [10, Theorem 3.5] in
characteristic zero and Theorem 1.2 in positive characteristic, it follows that ess(I1) = a1. By [1,
Lemma 3.18], there exists g ∈ GLn(k) such that g(I1) = (x1)

d1 , hence gI ⊆ (x1)
d1 +md2 ⊆ D. □

4.2. Step (2): For r ≥ 3, A2, Ar−1 =⇒ Br.

Lemma 4.4. Assume the setup of Assumption 4.1 and suppose c(I) = DP (I). Let ℓ ∈ R be a
general linear form and let H denote the zero locus of ℓ. Then c(H, I|H) = DP (I|H).

Proof. By Lemma 3.11, Corollary 3.12, and Corollary 3.18, we have
a1
d1

+ · · ·+ ar − 1

dr
= DP (I|H) ≤ c(I|H) ≤ a1

d1
+ · · ·+ ar − 1

dr
.

□

Lemma 4.5. Assume the setup of Assumption 4.1 and suppose r ≥ 3, c(I) = DP (I). If Ar−1 holds,
there exists g ∈ GLn(k) such that gI1 = (x1)

d1.

Proof. Note that DP (I) = a1/d1 + · · ·+ ar/dr. Let L be an ideal of R generated by a3 + · · ·+ ad
general linear forms. Since I is a complete intersection, I1+ I2+L is m

L -primary, so by Lemma 3.10
we have c(R/L, I+L

L ) = c(R/L, I1+I2+L
L ). Consequently, by repeated application of Corollary 3.18,

we have

(11) c(I) ≥ c

(
R/L,

I1 + I2 + L

L

)
+

a3
d3

+ · · ·+ ar
dr

.

Assuming c(I) = DP (I), we have

a1
d1

+
a2
d2

≤ c

(
R/L,

I1 + I2 + L

L

)
≤ a1

d1
+

a2
d2

,

where the left-hand side is by Corollary 3.12 and the right-hand side is by Equation (11). Both
inequalities are therefore equalities, so by the argument of A2, we have ess

(
I1+L
L

)
= a1. By

Proposition 2.40, it follows that ess(I1) = a1. The result then follows from [1, Lemma 3.18]. □

Lemma 4.6. Assume the setup of Assumption 4.1. Suppose c(I) = DP (I). Then there exists
g ∈ GLn(k) such that gI satisfies Equation (10).
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Proof. By Lemma 4.5, we may assume I1 is extended from k[x1]. Let ≻ denote the monomial partial
order induced by the monomial valuation w(x1,i) = 0 and w(xi,j) = 1 for i ≥ 2. For 2 ≤ i ≤ r, 1 ≤
j ≤ ai, let gi,j := in≻(fi,j). Since I is a complete intersection, we have fi,j /∈

√
I1 = (x1), hence

gi,j /∈ (x1) and moreover fi,j − gi,j ∈ (x1). Observe that

(12) in≻(I) ⊇ I1 + in≻(I2 + · · ·+ Ir) ⊇ I1 + (g2,1, . . . , gr,ar).

Let I ′ denote the right-hand side of Equation (12). Because gi,j and fi,j have the same image modulo
(x) =

√
I1, the ideal I ′ is a complete intersection. In particular, I ′ is a complete intersection of type

(d1, . . . , d1︸ ︷︷ ︸
a1

, . . . , dr, . . . , dr︸ ︷︷ ︸
ar

). By Lemma 3.11 and Proposition 2.10, we have

(13) DP (I) = DP (I ′) ≤ c(I ′) ≤ c(in≻(φ
∗I)) ≤ c(I) = DP (I).

As I1 = (x1)
d1 , we have c(I1) = a1/d1. Since I1 and (g2,1, . . . , gr,ar) are defined in terms of disjoint

sets of variables, we have by [26], Theorem 2.4 (1) that
(14)
c(R, I ′) = c(k[x1], I1) + c(k[x2, . . . ,xr], (g2,1, . . . , gr,ar)) =

a1
d1

+ c(k[x2, . . . ,xr], (g2,1, . . . , gr,ar)).

It follows from Equations (13) and (14) that (g2,1, . . . , gr,ar), which is a complete intersec-
tion in k[x2, . . . ,xr], also has DP = c. By Ar−1, there exists g ∈ GLn−a1(k) such that
g(g2,1, . . . , gr−1,ar−1) ⊆ (xd2

2 , . . . ,xdr
r ).

We define g′ :=

[
ida1 0
0 g

]
and we claim that g′I satisfies Equation (10). By construction, g′I ′

satisfies Equation (10). Since gi,j − fi,j ∈ (x1) for all 2 ≤ i ≤ r, 1 ≤ j ≤ ai, we have

g′(I2 + · · ·+ Ir) ⊆ g′(g1,1, . . . , gr,ar) + (x1),

which proves that g′I also satisfies Equation (10). □

4.3. Step (3): Ar−1, Br =⇒ Ar.

Definition 4.7. If f =
∑

b∈Zn γbx
b ∈ R, we define supp(f) = {xb : γb ̸= 0}.

Lemma 4.8. Assume the setting of Assumption 4.1. Suppose I satisfies Equation (10) and I ̸⊆ D.
Then there exists an ideal J and an integer 2 ≤ m ≤ r − 1 such that:
(C.i) There exist homogeneous dm-forms hm,1, . . . , hm,am such that

(15) J = (x1)d1 + · · ·+ (xm−1)dm−1 + (hm,1, . . . , hm,am) + (xm+1)dm+1 + · · ·+ (xr)dr .

(C.ii) For all 1 ≤ j ≤ am, we have hm,j = h′m,j + h′′m,j, where h′m,j ∈ k[xm], h′′m,j ∈ (x1), and
supp(h′′m,j) ∩D = ∅. Moreover, there exists some j such that hm,j − h′m,j ̸= 0;

(C.iii) c(J) ≤ c(I).

In the process of constructing J , we will construct a sequence of ideals J0, . . . , Js.

Notation 4.9. Recall that n = a1 + · · ·+ ar. For 1 ≤ i ≤ r, we define the map πi : Rn → R by

πi((b1,1, . . . , br,ar)) = bi,1 + · · ·+ bi,ai .

Moreover, we define the map π : Rn → Rr by π(b) = (π1(b), . . . , πr(b)). If Jk is given by

Jk = (x1)
d + (g2,1,k, . . . , gr−1,ar−1,k) +mdr ,

we define

(16) T i,j
k :=

{
π(b) : xb ∈ supp(gi,j,k) : π1(b) > 0

}
, T i

k =

ai⋃
j=1

T i,j
k , Tk =

r−1⋃
i=2

T i
k.
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Additionally, we define auxiliary conditions on each Jk. For k = 0, we define the conditions
(D.i)-(D.iv).
(D.i) For all 2 ≤ i ≤ r − 1, 1 ≤ j ≤ ai, we have supp(fi,j) ∩ k[xi] ⊆ supp(gi,j,0) ⊆ supp(fi,j);
(D.ii) We have T0 ̸= ∅;
(D.iii) For all xb such that (u1, . . . , ur) ∈ T0, we have

∑r
i=1

ui
di

< 1;
(D.iv) c(J0) ≤ c(I).
For k ≥ 1, we define the conditions (E.i)-(E.iv).
(E.i) For all 2 ≤ i ≤ r− 1, 1 ≤ j ≤ ai, we have supp(fi,j)∩ k[xi] = supp(gi,j,k)∩ k[x2, . . . ,xr] and

supp(gi,j,k) ⊆ supp(gi,j,k−1);
(E.ii) We have Tk ̸= ∅;
(E.iii) For all xb such that π(b) ∈ Tk, we have

∑r
i=1

πi(b)
di

< 1;
(E.iv) c(Jk) ≤ c(Jk−1).
Before we begin the proof of Lemma 4.8, we state two lemmas.

Lemma 4.10. Assume the setting of Assumption 4.1. Suppose I satisfies Equation (10). Then for
all 2 ≤ i ≤ r − 1, 1 ≤ j ≤ ai, we have supp(fi,j) ∩ k[xi] ̸= ∅.

Proof. Since I satisfies Equation (10), by Proposition 2.19 we have I2+···+Ir+(x1)
(x1)

= D+(x1)
(x1)

. It

follows that I2+(x1)
(x1)

= (x2)
d2 . In particular, we have that f2,j ∈ k[x2] + (x1). As f2,1, . . . , f2,a2 is

a complete intersection mod (x1), we conclude that supp(f2,j) ∩ k[x2] ̸= 0. For 3 ≤ i ≤ r − 1, we
apply the same argument to the image of fi,j mod (x1, . . . ,xi−1), proving the claim. □

Lemma 4.11. Let R be as in Assumption 4.1. Suppose that f1, . . . , fai are di-forms comprising a
regular sequence in R, and suppose that fj ∈ k[xi] for all 1 ≤ j ≤ ai. Then the integral closure J of
(f1, . . . , fj) in R is equal to (xi)

d.

Proof. Since k[xi] → R is faithfully flat, f1, . . . , fai form a regular sequence in k[xi]. By Theo-
rem 2.37, the integral closure of (f1, . . . , fai) in k[xi] is (xi)

d. By [17, Proposition 1.6.2], we have
(xi)

di ⊆ J . On the other hand, we have (f1, . . . , fai) ⊆ (xi)
di . By [17, Proposition 1.4.6], (xi)

d is
integrally closed in R, so J = (xi)

di . □

Lemma 4.12. Assume the setting of Assumption 4.1. Suppose I satisfies Equation (10) and I ̸⊆ D.
Then there exists an ideal J0 satisfying conditions (D.i)-(D.iv) of Notation 4.9.

Proof. We define a set TI which measures the failure of I to be contained in D. We define the sets

(17) Si,j
I :=

{
π(b) : xb ∈ supp(fi,j), π1(b) ̸= 0

}
, Si

0 =

ai⋃
j=1

Si,j
I , SI =

r−1⋃
i=2

Si
I .

Note that the condition xb /∈ D is equivalent to the condition v(xb) < 1, so we define

(18) T i,j
I = {(u1, . . . , ur) ∈ Si,j

I :

r∑
i=1

ui
di

< 1}, T i
I =

ai⋃
j=1

T i,j
I , TI =

r−1⋃
i=2

T i
I .

Since I satisfies Equation (10), we also have u1 > 0 for all (u1, . . . , ur) ∈ SI . Let

t0 := max
(u1,...,ur)∈SI

1− u1/d1 − · · · − ur/dr
u1

.

Since I ̸⊆ D, we have t0 > 0 and the elements of SI achieving this maximum are all in TI . Define
w0 : Zr → Q by

w0(u1, . . . , ur) =

(
− 1

d1
− t0

)
u1 −

u2
d2

− · · · − ur
dr

.
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For any xb ∈ supp(fi,j)∩ k[x2, . . . ,xr], we have w0(π(b)) = −v(xb). Since I satisfies Equation (10),
for any xb ∈ supp(fi,j) ∩ k[x2, . . . ,xr] we have w0(π(b)) ≤ −1.

By Lemma 4.10, supp(fi,j) ∩ k[xi] is nonempty for all 2 ≤ i ≤ r − 1, 1 ≤ j ≤ ai. For any xb ∈
supp(fi,j) ∩ k[xi], we have w0(π(b)) = −v(xb) = −1. Consequently, for all 2 ≤ i ≤ r− 1, 1 ≤ j ≤ ai
we have

(19) max
xb∈supp(fi,j)∩k[x2,...,xr]

w0(π(b)) = −1.

For all 2 ≤ i ≤ r, (u1, . . . , ur) ∈ Si
I we have

(20) −1 =

(
− 1

d1
− 1− u1/d1 − · · · − ur/dr

u1

)
u1 −

u2
d2

− · · · − ur
dr

≥ w0(u1, . . . , ur).

We define a monomial partial order >0 by

(21) xb >0 x
b′ ⇐⇒ w0(π(b)) > w0(π(b

′)).

For 2 ≤ i ≤ r − 1, 1 ≤ j ≤ ai, we set gi,j,0 = in>0(fi,j). We define

J0 = (x1)
d1 + (g2,1,0, . . . , gr−1,ar−1,0) +mdr .

By Equations (19) and (20), for 2 ≤ i ≤ r − 1 we have

(22) supp(in>0(fi,j)) = {xb ∈ supp(fi,j) : w0(b) = −1}.
We now verify that J0 satisfies the conditions (D.i)-(D.iv).
(D.i) By Equation (22), we have supp(gi,j,0) ⊆ supp(fi,j). By Equations (19) and (20), we also

have supp(fi,j) ∩ k[xi] ⊆ supp(gi,j,0).
(D.ii) We constructed w0 so that Equation (20) is sharp for some u ∈ TI .
(D.iii) For all (u1, . . . , ur) ∈ SI \ TI we have

w0(u1, . . . , ur) = −t0u1 −
r∑

i=1

ui
di

≤ t0u1 − 1 < −1.

(D.iv) Follows from Lemma 3.20.
□

Lemma 4.13. Assume the setting of Assumption 4.1 and Lemma 4.12. Then there exists an ideal
J1 satisfying conditions (E.i)-(E.iv) of Notation 4.9.

Proof. To begin, we set

(23) t1 := max
2≤i≤r−1

max
(u1,...,ur)∈T i

1

d2ru2 + · · ·+ drrur − did
i
r

u1
, w1(u1, . . . , ur) := t1u1−d2ru2−· · ·−drrur.

Analogously to Equation (21), we use w1 to define a monomial partial order >1. Next, given
2 ≤ i ≤ r − 1, 1 ≤ j ≤ ai, we set gi,j,1 = in>1(gi,j,0) and we define

J1 = (x1)
d1 + (g2,1,1, . . . , gr−1,ar−1,1) +mdr .

We now verify conditions (E.i)-(E.iv).
(E.i) The containment supp(gi,j,1) ⊆ supp(gi,j,0) is immediate. For 2 ≤ i ≤ r− 1, u ∈ T i

1, we have
w1(u) ≤ −did

i
r. Let xb ∈ supp(gi,j,0) ∩ k[x2, . . . ,xr]. If xb ∈ k[xi], then w1(π(b)) = −did

i
r.

If xb /∈ k[xi], then since v(xb) = 1, there exists some i < l ≤ r, 1 ≤ j ≤ al such that xl,j | xb,
hence

(24) w1(x
b) ≤ w(xl,j) ≤ −di+1

r < −did
i
r.

It follows that

(25) supp(gi,j,1) = {xb ∈ supp(gi,j,0 : w1(π(b)) = −did
i
r)}.
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(E.ii) Let 2 ≤ i ≤ r − 1, u ∈ T i,j
1 such that u realizes the maximum in Equation (23). Then

w1(u) = −did
i
r, so the monomial summand xb ∈ supp(gi,j,0) such that π(b) = u ties for the

leading term of gi,j,0, hence T i,j
1 ̸= ∅.

(E.iii) Follows from the fact that supp(gi,j,1) ⊆ supp(gi,j,0) and J0 satisfies (iii).
(E.iv) Follows from Lemma 3.20.

□

We may now prove Lemma 4.8.

Proof. Let J0, J1 be as in Lemmas 4.12 and 4.13. Let k ≥ 1 and assume that:
• We have constructed J0, . . . , Jk;
• J0 satisfies (D.i)-(D.iv);
• J1, . . . , Jk satisfy (E.i)-(E.iv).

Let Λk = {2 ≤ i ≤ r − 1 : T i
k ̸= ∅}. By assumption, |Λk| ≠ ∅. If |Λk| = 1, then we set s = k so

that Jk will be our final ideal in the sequence J0, . . . , Js. Otherwise, we will construct an ideal Jk+1

such that ∅ ⊊ Λk+1 ⊊ Λk. Let λk = minΛk. Let

(26) tk+1 := max
i∈Λk\{λk},(u1,...,ur)∈T i

k

uλk

u1
, wk+1(u1, . . . , ur) := −tk+1u1 + uλk

.

Analogously to Equation (21), we use wk+1 to define a partial order >k+1, and we set gi,j,k+1 =
in>(gi,j,k). We then define

Jk+1 = (x1)
d1 + (g2,1,k+1, . . . , gr−1,ar−1,k+1) +mdr .

For all 1 ≤ j ≤ aλk
and all xb ∈ supp(gλk,j,k), setting u = π(b) we have

(27) wk+1(u) ≤ uλk
≤ dk.

By Lemma 4.10 and Equation (27), we conclude that

(28) supp(gλk,j,k+1) = {xb ∈ supp(gλk,j,k) : wk(π(b)) = dk} = supp(gλk,j,k) ∩ k[xλk
].

Let 2 ≤ i ≤ r, i ̸= λk and 1 ≤ j ≤ ai. If xb ∈ supp(gi,j,k), setting u = π(b) we have

wk+1(u) ≤
(
−uλk

u1

)
u1 + uλk

= 0.

By Lemma 4.10, there exists xb ∈ supp(gi,j,k) ∩ k[xi], so we have

(29) supp(gi,j,k+1) = {xb ∈ supp(gi,j,k) : wk+1(π(b)) = 0} ⊇ supp(gi,j,k) ∩ k[xi].

We show that Jk+1 satisfies (E.i)-(E.iv).
(E.i) For all 2 ≤ i ≤ r − 1, the containment supp(gi,j,k+1) ⊆ supp(gi,j,k) follows from the con-

struction of gi,j,k+1 as an initial term of gi,j,k. Since Jk satisfies (E.i), we note that
(30)
supp(fi,j)∩k[xi] = (supp(fi,j)∩k[xi])∩k[xi] = (supp(gi,j,k)∩k[x2, . . . ,xr])∩k[xi] = supp(gi,j,k)∩k[xi].

For i ̸= λk, the containment supp(gi,j,k+1) ⊆ supp(fi,j) together with Equations (29)
and (30) imply

supp(fi,j) ∩ k[xi] ⊇ supp(gi,j,k+1 ∩ k[xi]) ⊇ (gi,j,k) ∩ k[xi] = supp(fi,j) ∩ k[xi].

For i = λk, by Equation (28) we have supp(gλk,j,k+1)∩k[xλk
] = supp(gi,j,k+1) = supp(fi,j)∩

k[xλk
].

(E.ii) Let 2 ≤ i ≤ r−1, i ̸= λk, u ∈ T i,j
k such that u realizes the maximum in Equation (26). Then

wk+1(u) = 0, so the monomial summand xb ∈ supp(gi,j,k) such that π(b) = u ties for the
leading term of gi,j,k, hence T i,j

k+1 ̸= ∅.
(E.iii) Follows from (E.iii) for Jk and (E.i) for Jk+1.
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(E.iv) Follows from Lemma 3.20.
Since |Λk| ≤ r − 2, we verify that the final ideal Js in the sequence J0, . . . , Js satisfies conditions
(C.i)-(C.iii) where m is the unique element of Λs. For all 2 ≤ i ≤ r− 1, 1 ≤ j ≤ ai, set hi,j := gi,j,s.
Given hi,j =

∑
xb∈supp(hi,j)

γbx
b, we set

h′i,j =
∑

xb∈supp(hi,j)∩k[x2,...,xr]

γbx
b.

By (E.i), we note that fi,j − h′i,j ∈ (x1).

(C.i) By Lemma 4.11, we have I1 = (x1)
d1 , hence

√
I1 = (x1). As I is a complete intersection, it

follows that for all 2 ≤ i ≤ r − 1 we have

a1+ai = codim(I1+(fi,1, . . . , fi,ai)) = codim((x1)+(fi,1, . . . , fi,ai)) = codim((x1)+(h′i,1, . . . , h
′
i,ai)).

As a consequence, we have codim((h′i,1, . . . , h
′
i,ai

)) = ai. By Lemma 4.11, we deduce that
(hi,1, . . . , hi,ai) = (xi)

di .
As Λs = {m}, for all 2 ≤ i ≤ r − 1, i ̸= m, 1 ≤ j ≤ ai we have T i,j

s = ∅, hence
supp(hi,j) ∩ (x1) = ∅. It follows from (E.i) for Js that

supp(hi,j) = supp(hi,j) \ (x1) = supp(hi,j) ∩ k[x2, . . . ,xr] = supp(fi,j) ∩ k[xi] ⊆ k[xi].

Consequently, we have hi,j = h′i,j for all 2 ≤ i ≤ r − 1, i ̸= m, 1 ≤ j ≤ ai, so we have
(xi)

di ⊆ Js for all 1 ≤ i ≤ r − 1, i ̸= m. By Lemma 3.4, we also have mdr ⊆ Js, hence we
have

Js ⊇ (x1)
d1 + · · ·+ (xm−1)

dm−1 + (hm,1, . . . , hm,am) + (xm+1)
dm+1 + · · ·+ (xr)

dr .

On the other hand, we have

Js ⊆ (x1)
d1 + · · ·+ (xm−1)

dm−1 + (hm,1, . . . , hm,am) + (xm+1)
dm+1 + · · ·+ (xr)

dr ,

so we deduce the equality in Equation (15) with J = Js.
(C.ii) If hm,j =

∑
b∈supp(hm,j)

γbx
b, we set h′m,j =

∑
b∈supp(hm,j)∩k[xm] γbx

b, which clearly satisfies
h′m,j ∈ k[xm]. By (E.i) for Js, we have

supp(hm,j − h′m,j) = supp(hm,j) \ k[xm] = supp(hm,j) \ k[x2, . . . ,xr] ⊆ (x1).

By (E.iii) for Js, we have supp(hm,j)∩ (x1)∩D = ∅. Lastly, since T i
s = ∅ for all i ̸= m, we

have Tm
s ̸= ∅. If 1 ≤ j ≤ am such that T i,j

s ̸= ∅, then hm,j − h′m,j ̸= 0.
(C.iii) By (D.iv) and (E.iv) for k = 1, . . . , s, we have

c(Js) ≤ c(Js−1) ≤ · · · ≤ c(J0) ≤ c(I).

□

Lemma 4.14. Assume the setting of Assumption 4.1. Let J ⊆ R be an ideal satisfying conditions
(C.i) and (C.ii) of Lemma 4.8. Then c(J) > DP (J).

Proof. Set Jm = (hm,1, . . . , hm,am). Let

J ′ = (x1)
d1 + · · ·+ (xm−1)

dm−1 + Jm + (xm+1)
dm+1 + · · ·+ (xr)

dr .

By (C.i), we have J = J ′, so it suffices to show c(J ′) > DP (J ′). We first prove this result in
characteristic p > 0.

By assumption, Jm ̸⊆ D. Define

σ = max
1≤j≤am,xb∈supp(hm,j),xb /∈(xm)dm

v(xb),
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which satisfies σ < 1 by condition (C.ii). By Theorem 1.2 we have c(Jm) > am
dm

. Let
f = ht11,m . . . h

tam
m,am be a generator of (Jm)νJm (pe) such that f /∈ m[pe]. Write

f =
∑

b∈supp(f)

αbx
b, f ′ :=

∑
b∈supp(f):xb /∈m[pe]

αbx
b.

As f ≡ f ′ mod m[pe], we have f ′Jm ⊆ m[pe].
Applying Briançon-Skoda and Lemma 4.11 to the ideal Jm+(x1)

(x1)
, we have

(xm)amdm + (x1)

(x1)
⊆ Jm + (x1)

(x1)
.

Let µ1, . . . , µM be a minimal set of monomial generators for (xm)amdm , and let µ̃1, . . . , µ̃M ∈ Jm
be homogeneous elements such that µi − µ̃i ∈ (x1) for all 1 ≤ i ≤ M . Let ≻ denote the reverse
lexicographic order after reversing the order of the variables. By definition of the reverse lexico-
graphic order, we have xb ≺ xb

′ for any xb ∈ (x1), x
b′ ∈ k[x2, . . . ,xr]. In particular, we have

in≻(µ̃i) = in≻(µi + (µ̃i − µi)) = µi. It follows that (xm)amdm ⊆ in≻(Jm).
By construction, we have:

• f /∈ m[pe];
• fJm ⊆ J

νJm (pe)+1
m ⊆ m[pe].

As f ′ ≡ f mod m[pe], we have

• f ′ /∈ m[pe];
• f ′Jm ⊆ m[pe] + J

νJm (pe)+1
m ⊆ m[pe].

Let in≻(f
′) = xb. As no element of supp(f ′) is in m[pe], we have xb /∈ m[pe]. Additionally, we have

in≻(f
′) in≻(Jm) ⊆ in≻(f

′Jm) ⊆ in≻(m
[pe]) = m[pe].

By Lemma 3.16, we have

(m[pe] : Jm) ⊆ (m[pe] : (xm)amdm) = m[pe] + (xm)am(pe−1)−amdm+1.

As xb /∈ m[pe], we have

(31) ordxm(x
b) ≥ am(pe − 1)− amdm + 1.

For 1 ≤ j ≤ am, write h′′m,j := hm,j − h′m,j . We therefore have

f =

am∏
i=1

(h′m,j + h′′m,j)
tj =

am∏
i=1

∑
0≤t′j ,t

′′
j ≤tj

t′j+t′′j =tj

(
tj
t′j

)
(h′m,j)

tj (h′′m,j)
t′′j .

As supp(f ′) ⊆ supp(f), there exist (t′1, t
′′
1), . . . , (t

′
am , t

′′
am) such that t′j + t′′j = tj for all 1 ≤ j ≤ am

and

xb ∈ supp
(
(h′m,1)

t′1(h′′m,1)
t′′1 . . . (h′m,am)

t′am (h′′m,am)
t′′am

)
.

Set I = (h′m,1, . . . , h
′
m,am). As I is extended from k[xm], by Lemma 4.11 we have I ⊆ (xm)dm , so

t′1 + · · ·+ t′am ≤ νI(p
e) ≤

⌊
am(pe − 1)

dm

⌋
.
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Consequently, we have

v(xb) =

am∑
j=1

t′jv(h
′
m,j) +

am∑
j=1

t′′j max
xc∈supp(h′′

m,j)
v(xb)(32)

=

am∑
j=1

t′j +

am∑
j=1

t′′j max
xc∈supp(h′′

m,j)
v(xb) ≤

am∑
j=1

t′j + σ

am∑
j=1

t′′j(33)

≤
⌊
am(pe − 1)

dm

⌋
+ σ

(
νJm(p

e)−
⌊
am(pe − 1)

dm

⌋)
.(34)

As in Lemma 3.16, let aλ, a+λ denote the ideals {f ∈ R : v(f) ≥ λ}, {f ∈ R : v(f) > λ} respectively.
Let te denote the quantity in Equation (34) and set ue := (pe − 1)(a1d1 + · · · + ar

dr
). It follows from

Lemma 3.16 that
f ′ /∈ m[pe] + a+te = (m[pe] : aue−te).

Let xb
′ ∈ aue−te such that xb+b′ /∈ m[pe]. Write xb

′
= xb

′′
y where y ∈ k[xm] and xb

′′ ∈
k[x1, . . . , x̂m, . . . ,xr]. As yxb /∈ m[pe], by Equation (31) we have

ord(xm)(y) ≤ (pe − 1)am − ord(xm)(x
b) ≤ amdm,

hence v(xb
′′
) = v(xb

′
)− v(y) ≥ ue − te − am. As D = (x1)d1 + · · ·+ (xr)dr , by Briançon-Skoda we

have
xb

′′ ∈ D⌊ue−te⌋−am ⊆ ((x1)
d1 + · · ·+ (xr)

dr)⌊ue−te⌋−am−n.

Since xb
′′
/∈ (xm), we in fact have

xb
′′ ∈ ((x1)

d1 + · · ·+ (xm−1)
dm−1 + (xm+1)

dm+1(xr)
dr)⌊ue−te⌋−am−n ⊆ (J ′)⌊ue−te⌋−am−n.

It follows that νJ ′(pe) ≥ νJm(p
e)+ ⌊ue − te⌋−am−n. Dividing by pe and letting e → ∞, we obtain

c(J ′) ≥ c(Jm) + lim
e→∞

ue
pe

− lim
e→∞

te
pe

= c(Jm) +

(
a1
d1

+ · · ·+ ar
dr

)
−
(
am
dm

(1− σ) + σc(Jm)

)
= (1− σ)

(
c(Jm)− am

dm

)
+

(
a1
d1

+ · · ·+ ar
dr

)

Since σ < 1 and c(Jm) > am
dm

, it follows that the above quantity exceeds DP (J ′).
In characteristic zero, one notes that for any ideal J satisfying conditions (i)-(iv), the reduction

of the pair (R, J) to characteristic p ≫ 0 satisfies conditions (i)-(iv). Moreover, the quantity σ is
constant for p ≫ 0. Assuming the reduction notation of Definition 3.14, we have

c(J) = lim
µ∈SpecA
|A/µ|→∞

c(Jµ) ≥ (1− σ) lim
µ∈SpecA
|A/µ|→∞

c(Jm,µ) +DP (J) = (1− σ)c(Jm) +DP (J) > DP (J).

□

Lemmas 4.6, 4.8 and 4.14 combine to give us a proof of Theorem 4.22 in the case of a complete
intersection.

Proposition 4.15. Assume the setup of Assumption 4.1 and suppose c(I) = DP (I). Then there
exists φ ∈ GLn(k) depending only on I1, . . . , Ir−1 such that φ∗I = D.

Proof. Using Lemma 4.6, we produce φ ∈ GLn(k) such that φ∗I satisfies Equation (10). By
Lemmas 4.8 and 4.14, we have φ∗I = D. □
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4.4. Generalizations.

Lemma 4.16. Let R = k[x1, . . . , xn] and let m = (x1, . . . , xn). Let I ⊆ R be a homogeneous ideal
and J ⊆ m any ideal. Then we have ⋂

m>0

I + Jm = I.

Proof. By [17, Corollary 6.8.5], we have

IRm ⊆
⋂
m>0

IRm + JmRm ⊆
⋂
m>0

IRm +mmRm = IRm.

As I = IRm = IRm ∩R, we have the following, from which the claim follows.

I ⊆
⋂
m>0

(
IRm + JmRm ∩R

)
⊆ IRm ∩R = I.

□

This allows us to prove a version of Theorem 4.22 for complete intersections of smaller codimen-
sion.

Proposition 4.17. Let k be an algebraically-closed field and set R = k[x1, . . . , xn]. Set m =
(x1, . . . , xn). Suppose r < n and I = (f1, . . . , fr) is a complete interesection, where fi is homoge-
neous of degree di and d1 ≤ · · · ≤ dr. Then c(I) ≥ 1

d1
+ · · · + 1

dr
with equality if and only if there

exist coordinates for R such that
I = (xd11 , . . . , xdrr ).

Proof. Let D = (xd11 , . . . , xdrr ). For an ideal J and an integer d, we let [J ]≤d denote the vector space
of homogeneous forms in J of degree ≤ d. Recall that the total space of forms of degree ≤ d in R
is finite-dimensional. It follows that the infinite descending chain [D+m]≤dr ⊇ [D+m2]≤dr ⊇ . . . ,
the limit of which is [D]≤dr by Lemma 4.16, must eventually stabilize. Let e0 ≫ dr such that
[D+me]≤dr = [D]dr for all e ≥ e0.

Let ℓr+1, . . . , ℓn be general linear forms such that (f1, . . . , fr, ℓr+1, . . . , ℓr) is a complete intersec-
tion. Choose e > max(dr, e0) such that [I + (ℓr+1, . . . , ℓn)e]≤dr = [I]≤dr .

Let Je := (ℓer+1, . . . , ℓ
e
n). Then I + Je is a complete intersection of type (d1, . . . , dr, e, . . . , e). By

the general bound c(a + b) ≤ c(a) + c(b), we have c(I + Je) ≤ c(I) + n−r
e . On the other hand, by

Corollary 3.18, if L is a general linear space of codimension n−r, then c(I+Je) ≥ c((I+Je)|L)+ n−r
e .

By Lemma 3.10, we have I|L = (I + Je)|L. It follows that

c(I + Je) ≥ c((I + Je)|L) +
n− r

e
= c(I|L) +

n− r

e
≥ DP (I|L) +

n− r

e
= c(I) +

n− r

e
.

We deduce that c(I + Je) =
1
d1

+ · · · + 1
dr

+ n−r
e = DP (I + Je). By Proposition 4.15, there exist

coordinates for R such that I + Je = D+me. As Je = (ℓr+1, . . . , ℓn)e, we have

[I]≤dr = [I + Je]≤dr = [D+me]≤dr = [D]≤dr .

The generators of I are contained in D and the generators of D are contained in I, so I = D. □

Lemma 4.18. Let k be an uncountably infinite field. Let R = k[x1, . . . , xn] and set m = (x1, . . . , xn).
Suppose I ⊆ R is a homogeneous ideal. As in Lemma 3.1, for 1 ≤ j ≤ n, let πj : R →
R/(xj+1, . . . , xn) ∼= k[x1, . . . , xj ] denote the projection map and ιj : k[x1, . . . , xj ] → k[x1, . . . , xn]
the usual embedding. Let > denote the reverse lexicographic order.

Let φ ∈ GLn(k) be very general: for now, we impose the condition that for all m > 0, we have
in>(φ

∗Im) = gin>(I
m); we will impose countably many additional conditions in Lemma 4.21. For

1 ≤ j ≤ n,m > 0, set aj,m := in>(πj(φ
∗Im)). For j > 0, 1 ≤ i ≤ j, let bi,j denote the ith unit

vector of Rj. Set pj(i) := inf{t : tbi,j ∈ Γ(aj,•)}. Then for all j, we have pj(j) = pn(j).
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Proof. By Lemma 3.1, we have ιj(aj,•) ⊆ an,• for all 1 ≤ j ≤ n, so we have pn(j) ≤ pj(j).
For the reverse direction, set t = pn(j). Since tbj,n ∈

⋃
m>0

1
2mΓ(an,2m), there exists a se-

quence {am = (am,1, . . . , am,n)}m>0 such that am ∈ Γ(an,2m) for all m and limm→∞ 2−mam =
tbj,n. For any choice of {(am,1, . . . , am,n)}m>0, we also have (⌈am,1⌉, . . . , ⌈am,n⌉) ∈ Γ(an,2m)

and limm→∞
(⌈am,1⌉,...,⌈am,n⌉)

2m = tbj,n. We may therefore assume without loss of generality that
am ∈ (Z+)n for all m > 0, 1 ≤ i ≤ n, hence for all m > 0, we have xam ∈ an,2m .

By [12, Theorem 2.1], an,2m is Borel-fixed, so we have x
am,1

1 · · ·xam,j−1

j−1 x
am,j+···+am,n

j ∈ an,2m .
Further note that aj,m = πj(an,m) by Lemma 3.1. By Proposition 2.36(iii), we conclude

(35) πj(x
am,1

1 · · ·xam,j−1

j−1 x
am,j+···+am,n

j ) ∈ πj(an,2m) ⊆ πj(an,2m) = aj,2m .

It follows that

tbj,j = lim
m→∞

(am,1, . . . , aj−1, aj + · · ·+ an)

m
∈ Γ(aj,•),

which proves pj(j) ≤ t = pn(j). □

Lemma 4.19. Assume the setup of Lemma 4.18. There exists a sequence {a′m}m>0 such that for
all m > 0, we have xa

′
m ∈ aj,2m and limm→∞ 2−ma′m = pj(j)bj,j.

Proof. Consequently, there exists a sequence {am = (am,1, . . . , am,j)}m>0 such that for all m > 0
we have limm→∞ 2−mam = tbj,j and am ∈ Γ(a2m).

First, note that Γ(a2m) = conv(log(xu) : xu ∈ a2m). If we triangulate Γ(a2m), we may choose
{um,i = (um,i,1, . . . , um,i,j)}ji=0 such that xum,i ∈ a2m and am ∈ conv(um,0, . . . , um,j+1). Reorder
the um,i so that um,0,j ≤ · · · ≤ um,j,j . Since am,j is the average of the um,i,j , we have um,0,j ≤ am,j .
For i < j, we similarly have um,0,i

j+1 ≤ um,0,i+···+um,j,i

j+1 = a0,i, so um,0,i ≤ (j + 1)a0,i.
For all m > 0, set a′m = um,0. Then we have limm→∞ a′m,i ≤ (j + 1) limm→∞ am,i = 0 for all

i < j, and
t ≤ lim inf

m→∞
2−ma′m,j ≤ lim

m→∞
2−mam,j = t.

It follows that limm→∞ 2−ma′m = tbj,j and for all m > 0, xa
′
m ∈ a2m . □

Lemma 4.20. Let k be an algebraically-closed field and R = k[x1, . . . , xj ]. Let q be a homogeneous
prime ideal of codimension j − 1 with xj /∈ q. If > denotes the reverse lexicographic order, then for
all m > 0 we have in>(q

m) = (x1, . . . , xj−1)
m.

Proof. Since k is algebraically-closed, there exist linear forms ℓ1, . . . , ℓj−1 ∈ R1 such that q =
(ℓ1, . . . , ℓj−1). It follows that [in>(q)]1 = in>(ℓ1 ∧ · · · ∧ ℓj−1), which is equal to x1 ∧ · · · ∧ xj−1 by
the fact that xj /∈ span(ℓ1, . . . , ℓj−1). Consequently, we have (x1, . . . , xj) ⊆ in>(q). By [8, Theorem
15.17], in>(q) and q have the same Hilbert series, so we in fact have (x1, . . . , xj) = in>(q).

For m > 1, a similar analysis applies. We have the standard containment (x1, . . . , xj−1)
m =

in>(q)
m ⊆ in>(q

m). As (x1, . . . , xj−1)
m has the same Hilbert series as qm, the result follows. □

Lemma 4.21. Assume the setup of Lemmas 4.18 and 4.19. Further assume that k = k. Write
I = I1 + · · · + Ir, where each Ii is generated by di-forms and d1 < · · · < dr. For 1 ≤ j ≤ r, set
hi := codim(I1 + · · · + Ii) − codim(I1 + · · · + Ii−1). For 1 ≤ i ≤ n, we also define qi := j, where
1 ≤ j ≤ r such that h1+ · · ·+hj−1 < i ≤ h1+ · · ·+hj. Then for all 1 ≤ j ≤ n, we have pn(j) = dqj .

Proof. Before we begin the proof, we first state the additional generality conditions on φ. For all
m > 0, assume that in>(πj(φ∗Im)) = gin>(πj(φ

∗Im)) = πj(in>(φ
∗Im)); this is possible by repeated

application of [3, Theorem 1.13.]. Since codimπj(φ
∗(I1 + · · · + Iqj−1)) < j, we may also choose φ

such that xj /∈
√
πj(φ∗(I1 + · · ·+ Iqj−1)). Each of these conditions is satisfied by a general choice

of φ, so they may be realized simultaneously.
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Set J = πj(φ
∗I). By construction of φ, in the language of Lemma 4.18 we have aj,m = in>(J

m).
By construction of φ, we have xj /∈

√
πj(φ∗(I1 + · · ·+ Iqj−1)), so we may choose a minimal prime

p over πj(φ∗(I1+ · · ·+ Iqj−1)) such that xj /∈ p. As codim p ≤ j− 1, we may choose a homogeneous
prime ideal q ⊇ p such that codim q = j − 1 and xj /∈ q. By Lemma 4.20, we have in>(q

m) =
(x1, . . . , xj−1)

m for all m > 0.
By Lemma 4.19, choose a sequence {am}m>0 such that xam ∈ a2m for all m > 0 and

limm→∞ 2−mam = pj(j)bj,j . Let em := am,1 + · · ·+ am,j . For all m > 0, we have

[J2m ]em =

 ∑
γ1+···+γr=2m

γ1d1+···+γrdr≤em

πj(φ
∗I1)

γ1 · · ·πj(φ∗Ir)
γr


em

For 1 ≤ i ≤ qj − 1, we have Ii ⊆ q. For qj ≤ i ≤ r, we have Ii ⊆ (x1, . . . , xj) = m. It follows that

[J2m ]em ⊆

 ∑
γ1+···+γr=2m

γ1d1+···+γrdr≤em

qγ1+···+γqj−1mγqj+···+γr


em

⊆

 ∑
α+β=2m

βdqj≤em

qαmβ


em

⊆

[
q
2m−

⌊
em
dqj

⌋]
em

.

Taking initial ideals of both sides, we have xam ∈ (x1, . . . , xj)
2m−

⌊
em
dqj

⌋
. Consequently, we have

em−am,j = am,1+ · · ·+am,j−1 ≥ 2m−
⌊
em
dqj

⌋
. As limm→∞ 2−m(am,1+ · · ·+am,j−1) = 0, this yields

0 ≤ lim inf
m→∞

2−m

(
2m −

⌊
em
dqj

⌋)
= 1− 1

dqj
lim inf
m→∞

am,j

dq,j
= 1− pj(j)

dqj
.

From the above equation, we have pj(j) ≥ dqj . For the reverse containment, we have by Lemma 3.4
that mdqj ⊆ J . It follows that x

(m+j−1)dj
j ∈ Jm for all m > 0, hence pj(j) ≤ dqj . □

We are now able to prove Theorem 4.22.

Theorem 4.22. Let k be an algebraically-closed field. Let R = k[x1, . . . , xn] and let I ⊆ R be a
m-primary homogeneous ideal. If DP (I) = c(I), then there exist integers d1, . . . , dn and φ ∈ GLn(k)
such that

φ∗I =
(
xd11 , . . . , xdnn

)
.y

Proof. By Corollary 3.12, we have

R \ Γ>(a•) = conv

(
0⃗, (e1(I), 0, . . . , 0) ,

(
0,

e2(I)

e1(I)
, 0, . . . , 0

)
, . . . ,

(
0, . . . , 0,

en(I)

en−1(I)

))
.

Assume the hi, qi notation from Lemma 4.21. If we let L := k((t)), then L is uncountably infinite and
algebraically closed. The generic initial ideal is stable under field extension, so applying Lemma 4.21
to I ⊗k L, we have ej(I)

ej−1(I)
= dqj for all 1 ≤ j ≤ n.

Let J ⊆ I be an ideal generated by hi general elements of Ii for each 1 ≤ i ≤ r. Then J is
a homogeneous (dq1 , . . . , dqn)-complete intersection, so by Lemma 3.11, we have DP (J) = DP (I).
It follows from Proposition 2.19 that J = I, so we have c(J) = c(I) = DP (I) = DP (J). By
Proposition 4.15, there exists φ ∈ GLn(k) such that

φ∗I = φ∗J =
(
x
dq1
1 , . . . , x

dqn
n

)
.

□
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5. Future Work

In [4], Bivià-Ausina poses the question as to whether or not Theorem 4.22 holds for arbitrary
ideals of On with c = DP . We answer this question in the negative.

Example 5.1. Let R = O2. Let x, y be local coordinates for O2 and let I = (x + y2, y3) ⊆ O2.
Then c(I) = 4

3 = DP (I). As I is not homogeneous, the same is true for φ∗I for any linear change of
coordinates φ : C2 → C2, so φ∗I cannot be a diagonal monomial ideal. If we instead allow ourselves
to consider holomorphic changes of coordinates, however, there is still hope. Let U denote a small
neighborhood of 0 ∈ C2 and let φ : U → C2 such that φ(x+ y2) = x, φ(y) = y. Then φ∗I = (x, y3)
is a diagonal monomial ideal as expected.

With the above example in mind, we believe Theorem 4.22 is evidence for a stronger conjecture
in the local setting.

Conjecture 5.2. Let k be an algebraically-closed field and (R,m) = (k[[x1, . . . , xn]], (x)). Let I ⊆ R
be m-primary with c(I) = DP (I). Then ej+1(I)/ej(I) ∈ Z+ for 0 ≤ j ≤ n − 1. Moreover, there
exists an automorphism φ : R → R with

φ(I) = (x
e1(I)
1 , x

e2(I)/e1(I)
2 , . . . , x

en(I)/en−1(I)
n ).

Lastly, we pose a question in the analytic setting.

Question 5.3. Let Ω ⊆ Cn be a bounded, hyperconvex domain containing 0. Let ϕ : Ω → R∪{−∞}
be plurisubharmonic with an isolated singularity at 0. Suppose c(ϕ) = DP (ϕ) (see Section 2.3 for
relevant definitions). Must there exist φ : Cn → Cn, biholomorphic at 0, such that φ(0) = 0 and

(ϕ ◦ φ)(z) =
(
log max

0≤i≤n−1

ei+1(ϕ)|zi|
ei(ϕ)

)
+O(1)?
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[22] Mircea Mustaţǎ, Shunsuke Takagi, and Kei-ichi Watanabe. “F-thresholds and Bernstein-Sato
polynomials”. In: European Congress of Mathematics. Eur. Math. Soc., Zürich, 2005, pp. 341–
364. isbn: 3-03719-009-4.

[23] R. Tyrrell Rockafellar. Convex analysis. Vol. No. 28. Princeton Mathematical Series. Princeton
University Press, Princeton, NJ, 1970, pp. xviii+451.

[24] Karl Schwede. “Generalized test ideals, sharp F -purity, and sharp test elements”. In: Math.
Res. Lett. 15.6 (2008), pp. 1251–1261. issn: 1073-2780. doi: 10.4310/MRL.2008.v15.n6.a14.

[25] Shunsuke Takagi and Kei-ichi Watanabe. “On F-pure thresholds”. In: J. Algebra 282.1 (2004),
pp. 278–297. issn: 0021-8693,1090-266X. doi: 10.1016/j.jalgebra.2004.07.011.

[26] Siyong Tao, Zida Xiao, and Huaiqing Zuo. Bernstein-Sato roots for weighted homogeneous
singularities in positive characteristic. en. arXiv:2410.20188 [math]. Oct. 2024. doi: 10.48550/
arXiv.2410.20188.

https://doi.org/10.1070/SM9442
https://doi.org/10.1070/SM9442
https://doi.org/10.4310/MRL.2003.v10.n2.a9
https://doi.org/10.1090/S1056-3911-04-00346-7
https://doi.org/10.1080/00927872.2014.952012
https://doi.org/10.1090/S0002-9947-03-03285-9
https://doi.org/10.1017/nmj.2016.14
https://doi.org/10.1090/S0002-9947-98-02096-0
https://doi.org/10.1090/S0002-9947-01-02720-9
https://doi.org/10.1090/S0002-9947-01-02720-9
https://doi.org/10.1080/00927872.2012.758271
https://doi.org/10.1080/00927872.2012.758271
https://doi.org/10.2140/gt.2019.23.957
https://doi.org/10.2140/gt.2019.23.957
https://doi.org/10.4171/114-1/16
https://doi.org/10.48550/arXiv.math/0203235
https://doi.org/10.4310/MRL.2008.v15.n6.a14
https://doi.org/10.1016/j.jalgebra.2004.07.011
https://doi.org/10.48550/arXiv.2410.20188
https://doi.org/10.48550/arXiv.2410.20188

	1. Introduction
	2. Preliminaries
	2.1. F-Pure and Log Canonical Thresholds
	2.2. Mixed Multiplicities and the Demailly-Pham Invariant
	2.3. Analytic Perspectives on the Log Canonical Threshold
	2.4. Newton Polytopes of Monomial Ideals
	2.5. Integral Closure of Ideals
	2.6. Essential Dimension

	3. The Limiting Polytope
	3.1. Complete Intersections in Positive Characteristic
	3.2. F-Pure Thresholds and the Demailly-Pham Invariant
	3.3. Behavior of the Threshold Under Modifications

	4. Proof of Theorem TBA in the Complete Intersection Case
	4.1. Step (1): A1, A2 hold
	4.2. Step (2): For r>=3, A2, Ar-1 implies Br.
	4.3. Step (3): Ar-1,Br implies Ar.
	4.4. Generalizations

	5. Future Work
	References

