
CLASSIFICATION OF MINIMAL SINGULARITY THRESHOLDS
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Abstract. Let k be a field of characteristic zero, R = k[x1, . . . , xn], and I ⊆ R an ideal primary to
(x1, . . . , xn). By a 2014 result of Demailly and Pham, we have lct(I) ≥ 1

e1(I)
+ e1(I)

e2(I)
+ · · ·+ en−1(I)

en(I)
,

where lct(I) is the log canonical threshold of (SpecR, SpecR/I) and ej(I) is the jth Segre number
of I.

If instead char k = p > 0, we show that the F-pure threshold of (R, I) satisfies the same lower
bound. In both characteristic zero and positive characteristic, we classify all homogeneous ideals
which attain the lower bound.

1. Introduction

We consider the log canonical threshold (lct) and F-pure threshold (fpt) of a pair (X,Y ) where
X is a smooth K-scheme and Y a subscheme supported at a point. The lct in characteristic zero
and the fpt in positive characteristic have attracted considerable attention in algebraic geometry
due to their connections with the Minimal Model Program and singularity theory. In recent years,
many authors [10, 5, 7, 4, 9, 17] have proven results comparing the lct to multiplicity-like invariants
of the pair (X,Y ).

In this paper, we will consider a lower bound on the lct due to Demailly and Pham [7] in terms
of the Segre numbers of Y (Theorem 1.2). We’ll show that in positive characteristic, the analogous
bound holds for fpt. Our main contribution (Theorem 4.14) is to classify the homogeneous pairs
(X,Y ) for which the lct or fpt equals the lower bound.

Theorem 1.1 ([5], Theorem 0.1). Let (R,m) be a regular local ring essentially of finite type over an
algebraically-closed field of characteristic zero. Suppose I is m-primary. Let e(I) denote the Hilbert
multiplicity of I and n = dimR. Then we have

e(I) ≥
(

n

lct(I)

)n

with equality if and only if the integral closure I of I is a power of m.

A variant of Theorem 1.1 due to Demailly and Pham uses the Segre numbers of I to obtain a
stronger lower bound on lct(I).

Theorem 1.2 ([7], Theorem 1.2). Let (On,m) denote the ring of germs at zero of holomorphic
functions Cn → C. Let I be an m-primary ideal and let ej(I) denote the jth Segre number of I (see
Section 2.3). Then we have

(1)
1

e1(I)
+
e1(I)

e2(I)
+ · · ·+ en−1(I)

en(I)
≤ lct(I).

Moreover, this bound is attained by the ideal I = (xd11 , . . . , x
dn
n ) for any d1, . . . , dn ∈ Z+.

We will refer to the left-hand side of Equation (1) as the Demailly-Pham invariant of I, denoted
DP (I) (see Section 2.3). In this paper, we classify homogeneous ideals I that achieve equality in
Equation (1).

The author was supported by NSF grant DMS-2101075 and NSF RTG grant DMS-1840234.
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Theorem 4.14. Let K be an algebraically-closed field of characteristic zero. Let R =
K[x1, . . . , xn],m = (x1, . . . , xn), and let I ⊆ R be a m-primary homogeneous ideal. If DP (I) =
lct(I), then there exist integers d1, . . . , dn such that, in suitable coordinates, we have

I =
(
xd11 , . . . , x

dn
n

)
.

If instead char K = p > 0, then the same result holds with lct(I) replaced by fpt(I).

We will briefly outline the proof of the theorem. Assume I is an ideal satisfying equality in
Equation (1). Write I = I1 + · · ·+ Ir, where Ij is generated by dj-forms.

(1) Using results from [4], we control the generic initial ideals {gin(In)}n≥1.
(2) Using (1), we obtain a formula for ej(I) in terms of the numbers dj , codim(I1 + · · · + Ij),

which allows us to reduce to the case of a complete intersection.
(3) We prove the result by induction on the number of distinct degrees d1, . . . , dr.

In the case r = 1, any m-primary ideal I generated by d-forms automatically satisfies I = md, so
there is no way to use r = 1 as a useful base case for our induction. Instead, we use r = 2. In this
case, we show (Lemma 3.18)that c(I) = DP (I) if and only if c(I1) = codim(I1)/d1. As I = I1 +md2 ,
it suffices to show that I1 = (x1, . . . , xcodim(I))

d1 in suitable coordinates. In characteristic zero, this
follows from [10, Theorem 3.5]. In positive characteristic, this fact is recorded below.

Theorem 1.3 ([1], Theorem 3.17). Let K be a field of characteristic p > 0. Let I be a homogeneous
ideal in K[x1, . . . , xn] generated by polynomials of degree d and set h = codim(I). Suppose that K is
algebraically-closed. Then fpt(I) = h/d if and only if I = (x1, . . . , xh)

d up to change of coordinates.

2. Preliminaries

2.1. F-Pure and Log Canonical Thresholds. We begin with a formal definition of the log
canonical threshold. For a detailed introduction, see [18].

Definition 2.1 (Log Resolution). Let X be a smooth variety over a characteristic zero field with
Y ⊆ X a proper closed subvariety with defining ideal a. Let W be a smooth variety. A projective
morphism π :W → X is a log resolution of (X,Y ) if π is an isomorphism over X \Y and the inverse
image a · OW is the ideal of a Cartier divisor D such that D +KW/X has simple normal crossings.

The following result gives a concise definition of the log canonical threshold.

Definition 2.2 (Log Canonical Threshold, [18] Theorem 1.1). Let X be a smooth variety with
Y ⊆ X a closed subvariety with defining ideal a. By Hironaka’s theorem on resolution of singularities
in characteristic zero, there exists a log resolution π :W → X of the pair (X,Y ). If E1, . . . , EN are
the exceptional divisors of π, then we can write

D =

N∑
i=1

aiEi and KW/X =

N∑
i=1

kiEi.

The quantity mini
ki+1
ai

does not depend on π and is called the log canonical threshold of (X,Y ).

Definition 2.3 (F-Pure Threshold, [20] Chapter 4.4). Let R be an F-finite ring, a ⊆ R an ideal,
and t ∈ R+. The pair (R, at) is sharply F-split if for infinitely many e > 0, the map

a⌈t(p
e−1)⌉ ·Hom(F e

∗R,R) → R

is surjective. The F-pure threshold of the pair (R, a) is the supremum of all t such that (R, at) is
sharply F-split.

In practice, we will not use the above two definitions. Instead, we use the following two proposi-
tions characterizing lct and fpt respectively.
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Proposition 2.4 ([20], following Definition 4.29). Let A be a finite-type Z-algebra and a ⊆
A[x1, . . . , xn] an ideal. Set K = Frac(A). Then we have

lct(K[x1, . . . , xn], a⊗A K) = lim
µ∈maxSpecA,|A/µ|→∞

fpt(A/µ[x1, . . . , xn], a⊗A A/µ).

Proposition 2.5 ([20], Exercises 4.19-4.20). Let (R,m) be an F-finite regular local ring. Then the
F-pure threshold of the pair (R, It) is equal to

sup

{
ν

pe
: Iν /∈ m[pe]

}
.

In fact, let νI(pe) = max{r : Ir /∈ m[pe]}. Then the F-pure threshold of (R, a) is equal to the limit
lime→∞ νI(p

e)/pe.
If instead R is a polynomial ring over an F-finite field and I ⊆ R a homogeneous ideal, then the

same results hold when we let m denote the homogeneous maximal ideal of R.

Many of the results we will make sense for both F-pure and log canonical thresholds, so we will
introduce the following notation to avoid stating the same results once each for characteristic zero
and positive characteristic.

Definition 2.6 (Notation: Nonspecified Threshold). Let R = K[x1, . . . , xn] and I ⊆ R a homoge-
neous ideal. We define the quantity c(R, I) as follows:

c(R, I) =

{
fpt(R, I) char R = p > 0

lct(R, I) char R = 0
.

If the context is clear, we will use c(I) for short.

We will require the following essential fact:

Proposition 2.7. Let R = K[x1, . . . , xn]. Let > be a monomial order. Let I ⊆ R be an ideal, and
in>(I) the initial ideal of I with respect to >. Then c(in>(I)) ≤ c(I).

Proof. For characteristic zero, see [6] for the semicontinuity of the lc threshold. For positive char-
acteristic, see [22], the claim preceding Remark 4.6. □

2.2. Newton Polytopes of Monomial Ideals. When working with monomial ideals, one often
identifies a monomial xa00 · · ·xann with the point (a0, . . . , an) ∈ Zn+1

≥0 . For future reference, it will
help to give a name to this identification.

Definition 2.8. Let K be a field. We define the map

log : {monomials in K[x0, . . . , xn]} → Zn+1
≥0 by the rule log(xa00 · · ·xann ) = (a0, . . . , an).

Definition 2.9. Let a ⊆ K[x0, . . . , xn] be a monomial ideal. Then the Newton Polytope of I,
denoted Γ(a), is the convex hull in Rn+1 of log(a). Later on, we will let conv(−) denote the convex
hull of a set.

Remark 2.10. We record several properties of Γ(a).
(i) Γ(a) is a closed, convex, unbounded subset of the first orthant of Rn.
(ii) When a is an m-primary ideal, the complement of Γ(a) inside the first orthant is an open,

bounded polyhedron.
(iii) For two ideals a, b, the Minkowski sum of Γ(a) and Γ(b) is equal to Γ(ab). In particular,

Γ(an) = nΓ(a).

Definition 2.11. Let I ⊆ K[x0, . . . , xn] be a homogeneous ideal and t ∈ Z+. We let [I]t denote
the vector space of t-forms in I.
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Proposition 2.12. Let a ⊆ K[x1, . . . , xn] be a monomial ideal. Then

c(a) =
1

µ
, where µ = inf{t : t⃗1 ∈ Γ(a)}.

Proof. See [15], Example 5 for characteristic zero and [13], Proposition 36 for prime characteristic.
□

Definition 2.13. Let a• be a graded sequence of monomial ideals. That is, suppose aras ⊆ ar+s

for all r, s ∈ Z+. We define Γ(a•) as the closure of the ascending union of the sets 1
2nΓ(a2n).

Following the proof of [5], Theorem 1.4 and the terminology of [16], we also define the limiting
polytope of an ideal I ⊆ R = K[x1, . . . , xn].

Definition 2.14. Let > be a monomial order on R. We set Γ>(I) = Γ(a•), where an = in>(I
n).

2.3. Mixed Multiplicities and the Demailly-Pham Invariant. To begin, we recall the defini-
tion of the mixed multiplicity symbol e(I1, . . . , Id;M).

Definition 2.15. Let M be a finite-length R-module. We let λR(M) denote the length of M as an
R-module.

Theorem 2.16 ([21], Theorem 17.4.2). Let (R,m) be a Noetherian local ring, I1, . . . , Ik ideals of R
primary to m, and M a finitely-generated R-module. Then there exists a polynomial P (n1, . . . , nk)
with rational coefficients and total degree at most dimR such that for all n1, . . . , nk ≫ 0, we have

P (n1, . . . , nk) = λR

(
M

In1
1 . . . Ink

k M

)
.

Remark 2.17. Suppose instead that S is a Noetherian ring, not necessarily local, and n is any
maximal ideal of S. If I1, . . . , Ik are n-primary ideals in S, then In1

1 · · · Ink
k is n-primary for all

n1, . . . , nk > 0. Consequently, we have

λS

(
S

In1
1 · · · Ink

k S

)
= λSn

(
Sn

In1
1 · · · Ink

k Sn

)
for all n1, . . . , nk, so Theorem 2.16 holds for I1, . . . , Ik without assuming that S is local.

Definition 2.18 (Mixed Multiplicity). Let (R,m) be a Noetherian local ring of dimension d. Let
I1, . . . , Ik be m-primary ideals of R. Let Q(n1, . . . , nk) denote the degree-d part of P (n1, . . . , nk).
The coefficients of Q define the mixed multiplicities e(I⟨d1⟩1 , . . . , I

⟨dk⟩
k ;M):

(2) Q(n1, . . . , nk) =
∑

d1+···+dk=d

(
d

d1, . . . , dk

)−1

e(I
⟨d1⟩
1 , . . . , I

⟨dk⟩
k ;M)

The expression e(I⟨d1⟩1 , . . . , I
⟨dk⟩
k ;M) is shorthand for the expression e(I1, . . . , I1, . . . , Ik, . . . , Id;M),

where Ij is repeated dj times.

Remark 2.19. Other authors, such as [21], have used the notation e(I [d1]1 , . . . , I
[dk]
k ;M) instead. To

avoid confusion with the Frobenius powers of the ideals Ij , we use angle brackets in the exponent.

Following [11], we now define the Segre numbers of an ideal.

Definition 2.20. Let (R,m) be a Noetherian local ring of dimension d and let I denote an m-
primary ideal. We define the jth Segre number of I as

ej(I) = e(I⟨j⟩,m⟨d−j⟩;R).

Suppose instead R = K[x1, . . . , xd] is a polynomial ring over a field. Let m denote the homogeneous
maximal ideal of R, and let I be an m-primary ideal. By Remark 2.17, the function λR(R/In1mn2R)
is a polynomial for n1, n2 ≫ 0. We may therefore define ej(I) in terms of this polynomial, and this
definition agrees with the quantity ej(IRm).



CLASSIFICATION OF MINIMAL SINGULARITY THRESHOLDS 5

We’ll record a few basic properties of the Segre numbers in a polynomial ring.

Proposition 2.21. Let R = K[x1, . . . , xd]. Let m denote the homogeneous maximal ideal of R, and
let I be an m-primary ideal.

(i) We have e0(I) = 1, e1(I) = ordm(I), and ed(I) = e(I).
(ii) The sequence e0(I), . . . , ed(I) is log convex.
(iii) If h1, . . . , hd are general 1-forms, then for all 0 ≤ j ≤ d we have ej(I) = e

(
I+(h1,...,hd−j)
(h1,...,hd−j)

)
,

where e(−) denotes the usual Hilbert multiplicity.

Proof.
(i): Follows from (iii).
(ii): See [21], Theorem 17.7.2.
(iii): See [21], Corollary 17.4.7.

□

We will now define the Demailly-Pham invariant, first defined in [7] and named in [4].

Definition 2.22. Let R = K[x1, . . . , xd], m the homogeneous maximal ideal of R, and I an m-
primary ideal. Then we set

DP (I) :=
1

e1(I)
+ · · ·+ ed−1(I)

ed(I)
.

This invariant satisfies a property similar to Theorem 2.28.

Proposition 2.23. Assume the setting of Definition 2.22, and let I1, I2 be m-primary ideals. Then
DP (I1) ≤ DP (I2) with equality if and only if I1 = I2.

Proof. This holds in much greater generality due to [4], Corollary 11. We need only that R is
quasi-unmixed. □

In [4, 7], the authors define this invariant in the case R = Od, the ring of germs of analytic
functions f : (Cd, 0) → C. In this setting, the lct of an ideal I = (g1, . . . , gr) ⊆ Od is defined as the
supremum of all s ∈ R+ such that the function (|g1|2 + · · · + |gr|2)−s is locally integrable at 0. In
this setting, we have the following result due to Bivià-Ausina.

Theorem 2.24 ([4], Theorem 13). Let R = (On,m) and I an m-primary ideal. Let I0 denote the
smallest integrally-closed monomial ideal containing I. Then the following are equivalent:

(i) There exist integers d1, . . . , dn such that I = (xd11 , . . . , x
dn
n )

(ii) lct(I0) = DP (I)
(iii) lct(I) = DP (I) and lct(I) = lct(I0).

We will demonstrate that the relationship between lct and DP among m-primary ideals is the
same in Od and C[x1, . . . , xd].

Proposition 2.25. Let R = C[x1, . . . , xd] and let m = (x1, . . . , xd), and let Od denote the ring of
germs of analytic functions f : (Cd, 0) → C. Then Od is local with maximal ideal mOd and there is
a bijective correspondence

(3) {m− primary ideals in R} → {mOd − primary ideals in Od} given by I 7→ IOd.

Moreover, this correspondence preserves both DP and lct.

Proof. The fact that mOd is the maximal ideal of Od is well-known and follows from the identification
of Od with the ring of convergent power series C{x1, . . . , xd}. This identification will also allow us
to demonstrate that the correspondence 3 is bijective.
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Since R→ C[[x1, . . . , xd]] is faithfully flat, for any m-primary ideal I ⊆ R we have

I ⊆ IOd ∩R ⊆ IC[[x1, . . . , xd]] ∩R = I,

so 3 is injective. On the other hand, given J ⊆ Od primary to mOd, there exists an integer n such
that mnOd ⊆ J , so there exists a generating set for J consisting of polynomials of total degree at
most n. It follows that J is extended from R, hence 3 is surjective.

To see that the DP (I) = DP (IOd), it suffices to note that

λR

(
R

In1mn2R

)
= λOd

(
Od

In1mn2Od

)
for all n1, n2. The fact that lct(I) = lct(IOd) is [18], Theorem 1.2. □

2.4. Integral Closure of Ideals.

Definition 2.26. Let I be an ideal in a ring R. An element r ∈ R is integral over I if there exists
an integer n and elements a1, . . . , an, ai ∈ Ii such that

rn + a1r
n−1 + · · ·+ an.

We then define the integral closure I of I as the set of elements r ∈ R which are integral over I.

Those hoping for an exhaustive discussion of the integral closure of ideals should consult [21].
For now, we will list some basic properties of I.

Proposition 2.27 (Properties of the Integral Closure, [21] Chapter 1). Let R be a ring and I ⊆ R
an ideal. Let φ : R→ S. Then we have

(i): I is an ideal.
(ii): (I) = I.
(iii): IS ⊆ IS.
(iv): If J ⊆ S is an ideal, then φ−1(J) = φ−1(J).
(v): For any multiplicatively-closed subset W ⊆ R, we have W−1I =W−1I.
(vi): The integral closure of a monomial ideal a in a polynomial ring K[x0, . . . , xn] is generated

by the set xα : α ∈ Γ(a).
(vii): If φ is faithfully flat or an integral extension, then IS ∩R = I.

Integral closure is an operation which respects many numerical invariants we are interested in
this paper.

Theorem 2.28 ([21], Proposition 11.2.1, Theorem 11.3.1). Let (R,m) be a formally equidimensional
local ring and I ⊆ J two m-primary ideals. Then e(I) = I(J) if and only if I = J .

The same result, of course, holds in the case that (R,m) is instead standard-graded.

Proposition 2.29. Let I ⊆ K[x1, . . . , xn] be an ideal. Then c(I) = c(I).

Proof. For characteristic zero, see [18], Property 1.15. For positive characteristic, see [22], Proposi-
tion 2.2 (6). □

2.5. Essential Dimension.

Definition 2.30 (Essential Dimension). Let J ⊆ R = K[x1, . . . , xd] be a homogeneous ideal. The
essential dimension e(J) is equal to the minimal r for which there exist linear forms ℓ1, . . . , ℓr such
that J is extended from I ⊆ K[ℓ1, . . . , ℓr].

We have the following result.
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Proposition 2.31 ([1], Proposition 3.3). Let k be an algebraically-closed field, R = k[x0, . . . , xn],
and J ⊆ R a homogeneous ideal. Set r = codim(J). Let L = (ℓr+1, . . . , ℓn), where the ℓi are chosen
generally. For r ≤ t ≤ n, set Lt = (ℓt+1, . . . , ℓn) and Jt = J+Lt

Lt
. Then for all r ≤ t ≤ n, we have

e(Jt) = max(t+ 1, e(J)).

3. The Limiting Polytope

3.1. Complete Intersections in Positive Characteristic. In this subsection, we prove [16, The-
orem 1.1] over a field of characteristic p > 0. While the main argument is nearly identical, some
intermediate lemmas must be weakened. In particular, [16, Lemma 3.6] is false in positive charac-
teristc, which is evident by considering gin(xp, yp) ⊆ K[x, y] for an infinite field K of characteristic
p. For the sake of self-containedness, we will sketch the entire adapted argument here.

Lemma 3.1. Let K be a field, R = K[x1, . . . , xn], and J ⊆ R a homogeneous ideal. Let 1 ≤ j ≤ n
and define πj : R→ R/(xj+1, . . . , xn) ∼= K[x1, . . . , xj ]. If > denotes the reverse lexicographic order,
then

in> πj(J) = πj(in>(J)).

Proof. Let f ∈ J be a homogeneous element. Write f = g+h, where h ∈ (xj+1, . . . , xn) and ∂g
∂xi

= 0

for all j + 1 ≤ i ≤ n. If g = 0, then πj(f) = 0. If g ̸= 0, then in>(f) = in>(g). In both cases, we
have πj(in>(f)) = in>(πj(f)). □

Definition 3.2. Let K be an infinite field. Let R = K[x1, . . . , xn] and let > denote the reverse
lexicographic order. Let I = (f1, . . . , fn) be a complete intersection ideal, where fi is homogeneous
of degree di and d1 ≤ · · · ≤ dn. For 1 ≤ j ≤ n, let Ij := (f1, . . . , fj). For 1 ≤ j ≤ n, let πj : R →
R/(xj+1, . . . , xn) ∼= K[x1, . . . , xj ] denote the projection map. Let φm ∈ GLn(K) be a general linear
transformation such that (φ−1

m )∗(xj+1, . . . , xn) is regular on R/Imj and in>(φ
∗
mI

m
j ) = gin>(I

m
j ) for

all 1 ≤ j ≤ n.

Lemma 3.3. Assume the setting of Definition 3.2. For all 1 ≤ j ≤ n,m > 0, we have gin>(I
m) =

(in>(πj(φ
∗
mI

m
j )))R.

Proof. Since Ij is a complete intersection, Imj is Cohen-Macaulay for all m > 0, hence codim(Imj ) =

depth(Imj ) = j. Consequently, by [14, Lemma 3.1], the generators of gin>(I
m
j ) are contained in

K[x1, . . . , xj ], so πj(gin>(Imj ))R = gin>(I
m
j ). By Lemma 3.1, we have

gin>(I
m
j ) = πj(gin>(I

m
j ))R = πj(in>(φ

∗
mI

m
j ))R = (in>(πj(φ

∗
mI

m
j )))R.

□

Lemma 3.4. Assume the setting of Definition 3.2. Then for all 1 ≤ j ≤ n,m > 0 we have
x
(m+j−1)
j ∈ gin>(I

m
j ).

Proof. By Lemma 3.3, it suffices to prove the result when j = n. Let m denote the homogeneous
maximal ideal of R. By Lemma 3.9, we have mdn ⊆ I. By the Briançon-Skoda theorem, we have
m(m+n−1)dn ⊆ I

m+n−1 ⊆ Im. It follows that

x(m+n−1)dn
n ∈ m(m+n−1)dn = φ∗

mm(m+n−1)dn ⊆ in>(φ
∗
mI

m) = gin>(I
m).

□

Proposition 3.5. Assume the setting of Definition 3.2. Let a• be the graded system of ideals given
by am = gin(Im). Then

(4) Rn
≥0 \ Γ(a•) = conv

(
0⃗, (d1, 0, . . . , 0) , (0, d2, 0, . . . , 0) , . . . , (0, . . . , 0, dn)

)
.
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Proof. By Lemma 3.4, we have

(5) conv
(
0⃗, (d1, 0, . . . , 0) , (0, d2, 0, . . . , 0) , . . . , (0, . . . , 0, dn)

)
⊆ Rn

≥0 \ Γ(a•).

As e(I) = d1 . . . dn, we also have vol(Rn
≥0 \ Γ(a•)) = (d1 . . . dn)/n! by [VOL=MULT]. It follows that

the containment in Equation (5) is in fact equality. □

Corollary 3.6. Assume the setup of Definition 3.2 and let r < n. Let J = (f1, . . . , fr) and for
m > 0 set am := gin>(J

m). Then we have

(6) conv
(
0⃗, (d1, 0, . . . , 0) , (0, d2, 0, . . . , 0) , . . . , (0, . . . , 0, dr, 0, . . . , 0)

)
= Rn

≥0 \ Γ(a•).

Proof. Follows from and Lemma 3.3 and Proposition 3.5. □

3.2. F-Pure Thresholds and the Demailly-Pham Invariant. In this subsection, we require
an asymptotic version of Theorem 2.24 in arbitrary characteristic. Only minor refinements of Bivià-
Ausina’s arguments are needed.

Lemma 3.7. Let K be an infinite field, R = K[x1, . . . , xn], and I an m-primary homogeneous ideal.
If > denotes the reverse lexicographic order, then for all 1 ≤ j ≤ n we have

lim
t→∞

ej(gin>(I
t))

tj
= ej(I).

This result was shown by Bivià-Ausina [4, Theorem 4] in the related setting where R = On and
> denotes the negative lexicographic order.

Proof. Without loss of generality, we first extend K to an uncountably infinite field; this changes
neither the hypothesis nor the conclusion.

If J ⊆ R is an m-primary homogeneous ideal and h1, . . . , hn is a sequence of linear forms, we say
that a h1, . . . , hn computes e•(J) if for 1 ≤ j ≤ n, we have

ej(J) = e

(
J + (h1, . . . , hn−j)

(h1, . . . , hn−j)

)
.

For m > 0, we define:
• Um is the open subset of GLn(K) such that in>(φ∗Im) is constant for all φ ∈ Um, such that
Um meets nontrivially the unipotent subgroup of upper triangular matrices with ones along
the diagonal, and such that U is fixed by the Borel subgroup of upper-triangular matrices.

• Vm is the open subset of GLn(K) for which φ∗xn, . . . , φ
∗x1 computes e•(Im).

• Wm is the open subset of GLn(K) for which φ∗xn, . . . , φ
∗x1 computes e•(ψ∗(Im)), where

ψ ∈ Um is arbitrary.
Nonemptiness of Um is [8, Theorem 15.18]. Nonemptiness of Vm,Wm follows from Proposition 2.21.
Since K is uncountable, we may choose φ ∈

⋂
m>0(Um ∩ Vm ∩Wm). Set J = (φ−1)∗I, and for

1 ≤ j ≤ n, let πj : R→ R/(xj+1, . . . , xn). We then have

ej(I) = e(πj(J)) = lim
m→∞

1

mj
e(πj(J

m))

= lim
m→∞

1

mj
e(in>(πj(I

m))) = lim
m→∞

1

mj
e(πj(in>(I

m)))

= lim
m→∞

1

mj
ej(in>(J

m)).

The first and fifth equalities follow the the fact that x1, . . . , xn computes e•(Jm) and e•(in>(J
m))

for all m ≥ 1. The second follows from the equality e(πj(J
m) = e(πj(J)

m) = mje(πj(J)). The
third is from [19, Corollary 1.13], and the fourth is from Lemma 3.1. □
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Definition 3.8. Let K be an infinite field, R = K[x1, . . . , xn],m = (x1, . . . , xn), and let a• be a
graded system of m-primary ideals. We define:

• The asymptotic Segre numbers: ej(a•) = lim infm
ej(am)
mj .

• The asymptotic Demailly-Pham invariant: DP (a•) = 1
e1(a•)

+ · · ·+ en−1(a•)
en(a•)

• The asymptotic singularity threshold: c(a•) = lim infmmc(am).

Before we prove our asymptotic version of Theorem 2.24, we require the following standard facts.

Lemma 3.9. Let L be a field, S = L[x1, . . . , xn], and J ⊆ S an m-primary homogeneous ideal
generated by forms of degree ≤ d. Then md ⊆ J .

Proof. We first prove the result in the case that L is infinite. First, choose forms f1, . . . , fn from
among the generators of J such that (f1, . . . , fn) is m-primary. If h1, . . . , hn are general linear forms,
then

J ′ := (h
d−deg(f1)
1 f1, . . . , h

d−deg(fn)
n fn)

is an m-primary (dn, . . . , dn)-complete intersection contained in J . As J ′ ⊆ md and e(J)′ = dn =

e(md), we have md = md ⊆ J ′ ⊆ J by Theorem 2.28.
Now, let L be an arbitrary field, and set S′ = L[x1, . . . , xn]. By Proposition 2.27 (vii) and the

infinite field case, we have J = JS′ ∩ S ⊇ mdS′ ∩ S = md. □

Lemma 3.10. Let L be a field and S = L[x1, . . . , xn]. Let J = (f1, . . . , fn) be a complete intersection
where deg fi = di and d1 ≤ · · · ≤ dn. Then we have the following:

(i) If L is infinite, then for a general hyperplane section H ⊆ SpecR, we have e(I|H) =
d1 · · · dn−1.

(ii) With no assumption on |L|, we have DP (I) = 1
d1

+ · · ·+ 1
dn

.

Proof. For (i), we note that for a general hyperplane section H, we have that (f1, . . . , fn−1)|H is
m-primary. By Lemma 3.9, we have (m|H)dn−1 ⊆ (f1, . . . , fn−1)|H . As fn ∈ (m|H)dn−1 , we have
(f1, . . . , fn−1)|H = J |H . Consequently, e(J |H) = e(J |H) = d1 · · · dn−1.

For (ii), we note that DP (J) is invariant under extension of the base field, so it suffices to consider
the case of an infinite field. But then the result follows from (i) and Proposition 2.21 (iii). □

Corollary 3.11. Let K be an infinite field, R = K[x1, . . . , xn], and I an m-primary homoge-
neous ideal. Then DP (I) ≤ c(I). Moreover, let > denote the reverse lexicographic order. Suppose
DP (I) = c(I). Letting am := gin>(I

m), we have

(7) Rn
≥0 \ Γ(a•) = conv

(
0⃗, (e1(I), 0, . . . , 0) ,

(
0,
e2(I)

e1(I)
, 0, . . . , 0

)
, . . . ,

(
0, . . . , 0,

en(I)

en−1(I)

))
.

Proof. By Lemma 3.7 we have DP (a•) = DP (I) and by Proposition 2.7 we have c(a•) ≤ c(I). Let
χ denote the characteristic function of Γ := Γ>(φ

∗I). Since Γ is convex, −χ : Rn → R is a convex
function. Let µ = inft : (t, . . . , t) ∈ Γ. Since −χ is proper, there exists a subgradient v to −χ at
µ⃗ := (µ, . . . , µ). Let H− denote the set {x ∈ Rn : ⟨v, (x− µ⃗)⟩ ≤ 0}. As

⟨v, (x− µ⃗)⟩ ≤ −χ(x) + χ(µ⃗) = 1− χ(x)

for all x ∈ Rn, we have Γ ⊆ H−. Since Γ is closed under translation by elements of Rn
≥0 and the

complement of Γ in Rn
≥0 is bounded, the same is true for H−. Consequently, the complement of

H− in Rn
≥0 is a simplex conv(0, (b1, 0, . . . , 0), . . . , (0, . . . , 0, bn)).

Define a graded system of monomial ideals b• by bm = xα : α ∈ mH−. By Proposition 2.12,
we have c(b•) = c(a•). Since am ⊆ bm for all m, we have DP (a•) ≤ DP (b•) by Proposition 2.23,
which implies DP (I) ≤ c(I).
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Now suppose DP (I) = c(I). Then we also have DP (a•) = DP (b•). By [4, Proposition 10], we
further have that ej(I) = ej(a•) = ej(b•) for all 1 ≤ j ≤ n. In particular, en(a•) = en(b•), so by
[19, Theorem 2.12 and Lemma 2.13], we have vol(Rn

≥0 \ Γ(a•)) = (Rn
≥0 \ Γ(b•)). Since Γ(a•),Γ(b•)

are closed and convex with positive volume, it follows that Γ(a•) = Γ(b•).
Since the generic initial ideal is Borel-fixed, we have b1 ≤ · · · ≤ bn. Consequently, we can compute

ej(b•) in terms of the numbers bj : we have(
x
⌊mb1⌋
1 , . . . , x

⌊mbn⌋
n

)
⊆ bm ⊆

(
x
⌈mb1⌉
1 , . . . , x

⌈mbn⌉
n

)
.

It follows that ej(b•) = b1 · · · bj . As ej(I) = ej(b•), the result follows. □

Remark 3.12. The condition Equation (7) is necessary to have c(I) = DP (I), but not sufficient.
By [16]

3.3. Behavior of the Threshold Under Modifications. In this section, fix the following nota-
tion.

Definition 3.13. Let K be a characteristic zero field, R = K[x1, . . . , xn], and let m denote the
homogeneous maximal ideal. Let I ⊆ R be an m-primary homogeneous ideal. Write I = I1+· · ·+Ir,
where Ij is generated by forms of degree dj and d1 < · · · < dj .

Let A ⊆ K be a finitely-generated Z-algebra and J ⊆ A[x1, . . . , xn] an ideal such that JR = I.
Such a subring A can always be constructed by adjoining to Z the field coefficients appearing in a
generating set for I. If µ is a maximal ideal of A, we let Iµ denote the image of J in (A/µ)[x1, . . . , xn],
and we write Iµ = I1,µ + · · ·+ Ir,µ.

Lemma 3.14 ([2], Lemma 3.2). Let R = K[x1, . . . , xn] and let m denote the homogeneous maximal
ideal. For any e, t ∈ Z+, we have

(m[pe] : mt) =

{
R t ≥ npe − n+ 1

m[pe] +mnpe−n+1−t t < npe − n+ 1

More generally, we have the following.

Lemma 3.15. Let R = K[x1, . . . , xn]. Let v be a monomial valuation on R with v(xi) ≥ 0 for all
1 ≤ i ≤ n. For f ∈ R, we define v(f) to be the minimum of v over the monomials in the support of
f . For λ ∈ R+, let aλ denote the ideal {f ∈ R : v(f) ≥ λ}. Let q ∈ Z+, λ ∈ R+. Then we have

(8) ((xq1, . . . , x
q
n) : aλ) = (xq1, . . . , x

q
n) + a(q−1)v(x1···xn)−λ.

Proof. The argument is the same as Lemma 3.14. Let m /∈ (xq1, . . . , x
q
n) be a monomial. Then

m | (x1 · · ·xn)q−1, so aλm ⊆ (xq1, . . . , x
q
n) if and only if v((x1 · · ·xn)q−1)− v(m) ≤ λ. We’ve shown

that the two sides of Equation (8) contain the same monomials; both sides are monomial ideals, the
result follows. □

Lemma 3.16 (Restriction to a Hyperplane I). Let K be a field of characteristic p > 0, let R =
K[x1, . . . , xn], and I ⊆ R a homogeneous ideal. For a hyperplane H cut out by a linear form ℓ, we
let I|H denote the image of I in R/ℓ. In this case, we have

(9) νI|H (p
e) ≤ max{r : Ir ̸⊆ m[pe] +m(n−1)(pe−1)+1},

Conversely, if |K| ≥ pe, then there exists a hyperplane H such that

(10) νI|H (p
e) ≥ max{r : Ir ̸⊆ m[pe] +m(n−1)(pe−1)−(n−2)(pe−1)+1}

Corollary 3.17. Assume the setup of Definition 3.13 and let H ⊆ SpecR be a hyperplane. For all
µ such that Iµ is m-primary, we have c(Iµ)−c(Iµ|Hµ) ≥ 1

dr
, and consequently, c(I)−c(I|H) ≥ 1/dr.



CLASSIFICATION OF MINIMAL SINGULARITY THRESHOLDS 11

Proof. Combining Lemma 3.14 and Lemma 3.16, we have

νI|H (p
e) ≤ max{s : mpeIs ̸⊆ m[pe]}.

By Lemma 3.9, we have mdr ⊆ I, so max{s : mpeIs ̸⊆ m[pe]} ≤ νI(p
e) −

⌊
pe

dr

⌋
, so we have

νI|H (p
e) ≤ νI(p

e)−
⌊
pe

d

⌋
. Dividing by pe and taking the limit as e→ ∞ gives the result. □

Lemma 3.18. Assume the setup of Definition 3.13. Suppose r = 2. Then we have

c(Iµ) =
n

d2
+ c(I1,µ)

d2 − d1
d2

for all µ and hence c(I) =
n

d2
+ c(I1)

d2 − d1
d2

.

In particular, for any µ ∈ maxSpecA, 1 ≤ s ≤ n, we have c(Iµ) = s
d1

+ n−s
d2

if and only if
c(I1,µ) =

s
d1

.

Proof. By Lemma 3.9, we have md2 ⊆ Iµ, so Iµ ⊆ I1,µ + md2 ⊆ Iµ, so c(Iµ) = c(I1,µ + md2).
Consequently, we have

νI(p
e) = max

{
a+ b : Ia1,µm

bdn
µ ̸⊆ m[pe]

}
= max{a+ b : Ja

p ̸⊆ (m[pe]
p : mbdn

p )}.

By Lemma 3.14, this is equivalent to

(11) νI(p
e) = max{a+ b : Ia1,µ ̸⊆ m[pe] +mnpe−n+1−bd2} = max

0≤a≤νI1,µ (p
e)
a+

npe − n+ 1− ad1
d2

.

The quantity being maximized in Equation (11) is an increasing function of a, so

νI(p
e) =

npe − n+ 1

d2
+ νI1,µ(p

e)
d2 − d1
d2

.

Dividing by pe and letting e→ ∞, we obtain

c(Iµ) =
n

d2
+ c(I1,µ)

d2 − d1
d2

.

For characteristic zero, we compute

c(I) = sup
µ
c(Iµ) = sup

µ

(
n

d2
+ c(I1,µ)

d2 − d1
d2

)
=

n

d2
+ c(I)

d2 − d1
d2

.

□

4. Proof of Theorem 4.14

In this section, we will prove Theorem 4.14. Our proof techniques work in arbitrary characteristic,
and we will begin in the case of a complete intersection.

4.1. The Case of an m-Primary Complete Intersection.

Definition 4.1. We assume a setup similar to Definition 3.13. Let K be an algebraically-closed
field. Let a1, . . . , ar, d1, . . . , dr ∈ Z+. For 1 ≤ i ≤ r, let xi denote the tuple of variables xi,1, . . . , xi,ai ,
and let R = K[x1, . . . ,xr]. Let I ⊆ R be a complete intersection of the form (f1,1, . . . , fr,ar) such
that fi,j is a di-form. For 1 ≤ j ≤ r, write Ij = (fj,1, . . . , fj,aj ). Let v denote the monomial

valuation with v(xi,j) = 1/di. Finally, we let D denote the ideal (xd1
1 , . . . ,x

dr
r ), which coincides

with the set of elements of valuation v(−) ≥ 1.

Definition 4.2. Assume the setup of Definition 4.1. We the following condition on the ideal I:
I1 is extended from K[x1] and

For 2 ≤ i ≤ r,
Ii + (x1)

(x1)
⊆ D+ (x1)

(x1)
.

(†)
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Lemma 4.3. Assume the setup of Definition 4.1 and suppose c(I) = DP (I). Let ℓ ∈ R be a general
linear form and let H denote the zero locus of ℓ. Then c(H, I|H) = DP (I|H).

Proof. By Lemma 3.10, Corollary 3.11, and Corollary 3.17, we have
a1
d1

+ · · ·+ ar − 1

dr
= DP (I|H) ≤ c(I|H) ≤ a1

d1
+ · · ·+ ar − 1

dr
.

□

Our first step in the proof of Theorem 4.14 is to show that for any complete intersection with
DP (I) = c(I), there exists φ ∈ GLn(K) such that φ∗(I) satisfies Equation (†). Before we begin, we
take a moment to briefly clarify the unusual structure of our induction. Lemma 4.4 for an integer r
depends on Lemma 4.4 and Theorem 4.14 for r− 1, whereas Theorem 4.14 for an integer r depends
on Lemma 4.4 for r and Theorem 4.14 for r − 1.

Lemma 4.4. Assume the setup of Definition 4.1. Suppose c(I) = DP (I). Then there exists
φ ∈ GLn(K), depending only on I1, . . . , Ir−1, such that φ∗I satisfies Equation (†).

Proof. Note that DP (I) = a1/d1 + · · · + ar/dr. We induct on r, and we also assume that Theo-
rem 4.14 holds for r′ < r. The base case r = 1 is trivial: I = md1 by Theorem 2.28, so we may take
ρ = id.

Now suppose r > 1. Let L be an ideal of R generated by a3+ · · ·+ad general linear forms. Since
I is a complete intersection, I1 + I2 + L is m

L -primary, so by Lemma 3.9, we have

I1 + I2 + L

L
⊇ I1 +md2 + L

L
⊇ I + L

L
,

so we have c(R/L, I+L
L ) = c(R/L, I1+I2+L

L ). Consequently, by repeated application of Corollary 3.17,
we have

(12) c(I) ≥ c

(
R/L,

I1 + I2 + L

L

)
+
a3
d3

+ · · ·+ ar
dr
.

Assuming c(I) = DP (I), we have
a1
d1

+
a2
d2

≤ c

(
R/L,

I1 + I2 + L

L

)
≤ a1
d1

+
a2
d2
,

where the left-hand side is by [DP-lowerbound] and the right-hand side is by Equation (12). Both
inequalities are therefore equalities, so by Lemma 3.18 we have

c

(
R/L,

I1 + L

L

)
=
a1
d1
.

By Theorem [1], Theorem 3.17, we have e
(
I1+L
L

)
= a1, hence by Proposition 2.31 we have

that e(I1) = a1. Consequently, there exists φ ∈ GLn(K) depending only on I1 such that φ∗I1 is
extended from K[x1]. Now, let ≻ denote the monomial partial order induced by the monomial
valuation w(x1,i) = 0 and w(xi,j) = 1 for i ≥ 2. For 2 ≤ i ≤ r, 1 ≤ j ≤ ai, let gi,j := in≻(φ

∗fi,j).
Since φ∗I is a complete intersection, we have φ∗fi,j /∈

√
φ∗I1 = (x1), hence gi,j /∈ (x1) and moreover

φ∗fi,j − gi,j ∈ (x1). Observe that

(13) in≻(φ
∗I) ⊇ φ∗I1 + φ∗ in≻(I2 + · · ·+ Ir) ⊇ φ∗I1 + (g2,1, . . . , gr,ar).

Let I ′ denote the right-hand side of Equation (13). Because gi,j and φ∗fi,j have the same im-
age modulo (x) =

√
φ∗I1, the ideal I ′ is a complete intersection. In particular, I ′ is a complete

intersection of type (d1, . . . , d1︸ ︷︷ ︸
a1

, . . . , dr, . . . , dr︸ ︷︷ ︸
ar

).

By Lemma 3.10 and Proposition 2.7, we have

(14) DP (I) = DP (I ′) ≤ c(I ′) ≤ c(in≻(φ
∗I)) ≤ c(I) = DP (I).
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As φ∗I1 = (x1)
d1 , we have c(φ∗(I1)) = a1/d1. Since φ∗I1 and (g2,1, . . . , gr,ar) are defined in terms

of disjoint sets of variables, we have by [23], Theorem 2.4 (1) that
(15)
c(R, I ′) = c(K[x1], φ

∗I1)+c(K[x2, . . . ,xr], (g2,1, . . . , gr,ar)) =
a1
d1

+c(K[x2, . . . ,xr], (g2,1, . . . , gr,ar)).

It follows from Equations (14) and (15) that (g2,1, . . . , gr,ar), which is a complete intersection
in K[x2, . . . ,xr] also has DP = lct. By induction, there exists ψ ∈ GLn−a1(K) depending only
on (g2,1, . . . , gr−1,ar−1) such that ψ∗(g2,1, . . . , gr−1,ar−1) ⊆ (xd2

2 , . . . ,x
dr
r ). Lastly, we define ρ :=[

ida1 0
0 ψ

]
◦φ, a transformation which depends only on I1, . . . , Ir−1, and we claim that ρ∗I satisfies

Equation (†). By construction, ρ∗I+ψ∗(g1,1, . . . , gr,ar)R satisfies Equation (†). Since gi,j −φ∗fi,j ∈
(x1) for all 2 ≤ i ≤ r, 1 ≤ j ≤ ai, we have ρ∗(I2 + · · · + Ir) ⊆ ψ∗(g1,1, . . . , gr,ar)R + (x1), which
proves that ρ∗I also satisfies Equation (†). □

The following two lemmas will combine with Lemma 4.4 to prove Theorem 4.14 in the case of a
complete intersection.

Lemma 4.5. Assume the setting of Definition 4.1. Suppose I satisfies Equation (†) and I ̸⊆ D.
Then there exists an ideal J and an integer 2 ≤ m ≤ r − 1 such that:

(1) J = (x1)
d1 +(h2,1, . . . , hr−1,ar−1)+ · · ·+Jr−1+mdr , where hi,j is homogeneous of degree dj.

(2) For all 1 ≤ j ≤ am, there exists h′m,j such that h′m,j ∈ K[xm], h′m,j − hm,j ∈ (x1), and no
monomial summand of hm,j − h′m,j is contained in D. Moreover, there exists some j such
that hm,j − h′m,j ̸= 0.

(3) For all 2 ≤ i ≤ r − 1, i ̸= m, 1 ≤ j ≤ ai, we have hi,j ∈ K[xi].
(4) (h2,1, . . . , hr−1,ar−1) is a complete intersection mod (x1).
(5) c(J) ≤ c(I)

Proof. Suppose I satisfies Equation (†), but I ̸⊆ D. We will construct a simpler ideal J such that
J ̸⊆ D, DP (I) = DP (J), and c(J) ≤ c(I).

We define a set T0 which measures the failure of I to be contained in D. First, for b =

(e1,1, . . . , er,ar) ∈ Rn we define π(b) =
(∑a1

j=1 e1,j , . . . ,
∑ar

j=1 er,j

)
= (π1(b), . . . , πr(b)). We then

define the sets

(16) Si,j
0 :=

{
π(b) : xb ∈ supp(fi,j), π1(b) ̸= 0

}
, Si

0 =

ai⋃
j=1

Si,j
0 , S0 =

r−1⋃
i=2

Si
0.

Note that the condition xb /∈ D is equivalent to the condition v(xb) < 1, so we define

(17) T i,j
0 = {(u1, . . . , ur) ∈ Si,j

0 :
r∑

i=1

ui
di
< 1}, T i

0 =

ai⋃
j=1

T i,j
0 , T0 =

r−1⋃
i=2

T i
0.

Since I satisfies Equation (†), we also have u1 > 0 for all (u1, . . . , ur) ∈ S0. Let

t0 := max
(u1,...,ur)∈S0

1− u1/d1 − · · · − ur/dr
u1

.

Note that the quantity 1−u1/d1−···−ur/dr
u1

is positive precisely when (u1, . . . , ur) /∈ D, so t0 > 0 and
the elements of S0 achieving this maximum are all in T0. Define w0 : Zr → Q by

w0(u1, . . . , ur) =

(
− 1

d1
− t0

)
u1 −

u2
d2

− · · · − ur
dr
.

For any xb ∈ supp(fi,j) ∩K[x2, . . . ,xr], we have w0(π(b)) = −v(xb). Since I satisfies Equation (†),
for any xb ∈ supp(fi,j) ∩K[x2, . . . ,xr] we have w0(π(b)) ≤ −1 .
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Moreover, for all 2 ≤ i ≤ r−1, 1 ≤ j ≤ ai, we claim that there exists some xb ∈ supp(fi,j)∩K[xi].

Since I satisfies Equation (†), by Proposition 2.23 we have I2+···+Ir+(x1)
(x1)

= D+(x1)
(x1)

. It follows that
I2+(x1)
(x1)

= (x2)
d2 . In particular, we have that f2,j ∈ K[x2] + (x1). As f2,1, . . . , f2,a2 is a complete

intersection mod (x1), we conclude that supp(f2,j)∩K[x2] ̸= 0. For 3 ≤ i ≤ r−1, we apply the same
argument to the image of fi,j mod (x1, . . . ,xi−1). Consequently, for all 2 ≤ i ≤ r − 1, 1 ≤ j ≤ ai
we have

(18) max
xb∈supp(fi,j)∩K[x2,...,xr]

w0(π(b)) ≥ max
xb∈supp(fi,j)∩K[xi]

w0(π(b)) = −1.

For all 2 ≤ i ≤ r, (u1, . . . , ur) ∈ Si
0 we have

(19) −1 =

(
− 1

d1
− 1− u1/d1 − · · · − ur/dr

u1

)
u1 −

u2
d2

− · · · − ur
dr

≥ w0(u1, . . . , ur).

We define a monomial partial order >0 by

(20) xb >0 x
b′ ⇐⇒ w0(π(b)) >0 w0(π(b

′)).

For 2 ≤ i ≤ r − 1, 1 ≤ j ≤ ai, we set gi,j,0 = in>0(fi,j). We define J0 = (x1)
d1 +

(g2,1,0, . . . , gr−1,ar−1,0) +mdr . By Equations (18) and (19), for 2 ≤ i ≤ r − 1 we have

(21) supp(in>0(fi,j)) = {xb ∈ supp(fi,j) : w0(b) = −1}.

We constructed J0 to prune away all monomials xb ∈ supp(fi,j) such that v(xb) > 1 while ensuring
c(J0) ≤ c(I) and J0 ̸⊆ D. We now construct a sequence of ideals J1, . . . , Js for some s ∈ Z+, each
ideal Ji+1 a modification of Ji. Suppose we have defined

Jk = (x1)
d1 + (g2,1,k, . . . , gr,ar,k) +mdr .

For k ≥ 0, define

(22) T i,j
k+1 := {π(b) : xb ∈ supp(gi,j,k) and π1(b) ̸= 0}, T i

k+1 =

ai⋃
j=1

T i,j
k , S0 =

r−1⋃
i=2

T i
k+1.

As we proceed with our iterative construction, we ensure that the following properties are main-
tained:

(∗)

(i) For all k, we assume that supp(fi,j) ∩ K[xi] ⊆ supp(gi,j,k) ⊆
supp(fi,j). For k ≥ 1, we further assume that supp(gi,j,k) ∩
K[x2, . . . ,xr] = supp(fi,j) ∩K[xi].

(ii) For all k, we assume that Tk+1 ̸= ∅.
(iii) For all k, we assume that

∑r
i=1

ui
di
< 1 for all (u1, . . . , ur) ∈ Tk+1.

We verify the conditions ∗ for k = 0:
(i) Follows from Equations (18), (19) and (21).
(ii) We constructed w0 so that Equation (19) is sharp for some u ∈ T0.
(iii) For all (u1, . . . , ur) ∈ S0 \ T0 we have

w0(u1, . . . , ur) = −tu1 −
r∑

i=1

ui
di

≤ tu1 − 1 < −1.

We begin the construction of J1. Set
(23)

t1 := max
2≤i≤r−1

max
(u1,...,ur)∈T i

1

d2ru2 + · · ·+ drrur − did
i
r

u1
, w1(u1, . . . , ur) = t1u1 − d2ru2 − · · · − drrur.
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Define >1 analogously to Equation (20) and for 2 ≤ i ≤ r− 1, 1 ≤ j ≤ ai, define gi,j,1 = in>1(gi,j,0).
We verify that J1 satisfies the conditions ∗.

(i) For 2 ≤ i ≤ r − 1, u ∈ T i
1, we have w1(u) ≤ −didir. Let xb ∈ supp(gi,j,0) ∩K[x2, . . . ,xr]. If

xb ∈ K[xi], then w1(π(b)) = −didir. If xb /∈ K[xi], then since v(xb) = 1, there exists some
i < l ≤ r, 1 ≤ j ≤ al such that xl,j | xb, hence

(24) w1(x
b) ≤ w(xl,j) ≤ −di+1

r < −didir.

It follows that

(25) supp(gi,j,1) = {xb ∈ supp(gi,j,0 : w1(π(b)) = −didir)}.

(ii) Let 2 ≤ i ≤ r − 1, u ∈ T i,j
1 such that u realizes the maximum in Equation (23). Then

w1(u) = −didir, so the monomial summand xb ∈ supp(gi,j,0) such that π(b) = 0 ties for the
leading term, hence T i,j

2 ̸= 0.
(iii) This follows from the fact that J1 satisfies (i) and J0 satisfies (iii).

Suppose now k ≥ 2 and we have defined J0, . . . , Jk−1. Let Λk = {2 ≤ i ≤ r − 1 : T i
2 ̸= ∅}. By

assumption, |Λk| ≠ ∅. If |Λk| = 1, then Jk−1 will be our final ideal in the sequence J0, . . . , Js.
Otherwise, we will construct an ideal Jk such that |Λk+1| ⊊ |Λk|. Let λk = minΛk. Let

(26) tk := max
i∈Λk\{λk},(u1,...,ur)∈T i

k

uλk

u1
, wk(u1, . . . , ur) := −tku1 + uλk

.

We then let >k analogously to Equation (20), we set gi,j,k = in>k
(gi,j,k−1) and define

Jk = (x1)
dr + (g2,1,k, . . . , gr−1,ar−1,k) +mdr .

We verify that Jk satisfies properties (i)-(iii):
(i) For i ∈ Λk \ {λk}, (u1, . . . , ur) ∈ T i

k, we have wk(u1, . . . , ur) ≤ 0. For xb ∈ supp(gi,j,k−1) ∩
K[xi], we have wk(π(b)) = 0. As supp(gi,j,k−1) ∩K[xi] ̸= ∅, we have

supp(gi,j,k) = {xb ∈ supp(gi,j,k−1) : wk(π(b)) = 0}.

The result then follows from the fact that Jk−1 satisfies (i).
(ii) As in the case k = 1, this follows from our choice of tk.
(iii) This follows from condition (i) for Jk and condition (iii) for J0.

We note one final comparison between Jk−1, Jk. For all (u1, . . . , ur) ∈ T λk
k , we have wk(u1, . . . , ur) ≤

uλk
< dλk

= wk(Ck), so the equality is never achieved for any (u1, . . . , ur) ∈ T λk
k . It follows that

Λk+1 ⊆ Λk \{λk}, hence this sequence of ideals J1, . . . , Js eventually terminates. Let J = Js denote
the final ideal in this sequence, and write hi,j = gi,j,s. We now verify that J satisfies the five
properties in the lemma statement.

(1) Follows from the fact that supp(gi,j,s) ⊆ supp(fi,j).
(2) Here, m is the unique element of Λs. This follows from condition (i) on Js.
(3) Follows from the facts that supp(gi,j,s) ∩K[x2, . . . , xr] = supp(fi,j) ∩K[xi] and T i

s+1 = ∅.
(4) Follows from the fact that supp(gi,j,s) ∩K[x2, . . . , xr] = supp(fi,j) ∩K[xi].
(5) As Jk ⊆ in>k

(Jk−1) for k ≥ 1, we have by Proposition 2.7

c(I) = c(I) ≥ c(in>0(I)) ≥ c(J0) ≥ c(in>(J0)) ≥ c(J1) ≥ · · · ≥ c(Js) = c(J).

□

Lemma 4.6. Assume the setting of Definition 4.1. Let J ⊆ R be an ideal satisfying (1)-(4) of
Lemma 4.5. Then c(J) > DP (J).
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Proof. Set Jm = (hm,1, . . . , hm,am). Let J ′ = (x1)
d1 + · · ·+Jm+(xm−1)

dm−1 ++(xm+1)
dm+1 + · · ·+

(xr)
dr . By (2) and (4), we have J = J ′, so it suffices to show c(J ′) > DP (J ′). We first prove this

result in characteristic p > 0.
By assumption, Jm ̸⊆ D. Let σ denote the maximum value of v(xb) over all xb ∈ supp(I)\(xm)dm ,

which satisfies σ < 1 by condition (2). By Theorem [1], Theorem 3.17 we have c(Jm) > am
dm

. Let f
be a generator of (Jm)νJm (pe) such that f /∈ m[pe]. Write

f =
∑

b∈supp(f)

αbx
b, f ′ :=

∑
b∈supp(f):xb|(x1···xr)p

e−1

αbx
b.

As f ≡ f ′ mod m[pe], we have f ′Jm ⊆ m[pe]. Let ≻ denote the negative lexicographic order after
permuting the variables into the order xm,x1, . . . ,xm−1, xm+1, . . . ,xr. By Briano̧n-Skoda on the
ideal Jm+(x1)

(x1)
, we have (xm)amdm ⊆ in≻(Jm). Let in≻(f ′) = αbx

b. Since f ′Jm ⊆ m[pe], taking initial
terms we also have in≻(f

′)(xm)amdm ⊆ m[pe]. By Lemma 3.15, we have

(27) ordxm(x
b) ≥ am(pe − 1)− amdm

Consequently, we have

(28) v(f ′) = v(xb) ≤
⌊
am(pe − 1)− amdm

dm

⌋
+ σ

(
νJm(p

e)−
⌊
am(pe − 1)− amdm

dm

⌋)
.

As in Lemma 3.15, let aλ denote the ideal {f ∈ R : v(f) ≥ λ}. Let te denote the right-hand side of
Equation (28) and set ue := (pe − 1)(a1d1 + · · ·+ ar

dr
). It follows from Lemma 3.15 that

f ′ /∈ m[pe] + ate+1 = (m[pe] : aue−te−1).

Let xb′ ∈ aue−te−1 such that xb+b′ /∈ m[pe]. Let xb′′ denote the largest factor of xb′ such that
xb

′′
/∈ (xm). By Equation (27), we must have ord(xm)(x

b′−b′′) ≤ amdm, hence v(xb′′) ≥ v(xb
′′
)−am ≥

⌊ue − te⌋ − 1− am. As D = (x1)d1 + · · ·+ (xr)dr , by Briançon-Skoda we have

xb
′′ ∈ D⌊ue−te⌋−1−am−n ⊆ ((x1)

d1 + · · ·+ (xr)
dr)⌊ue−te⌋−1−am−n.

Since xb′′ /∈ (xm), we in fact have

xb
′′ ∈ ((x1)

d1 + · · ·+ (xm−1)
dm−1 + (xm+1)

dm+1(xr)
dr)⌊ue−te⌋−1−am−n ⊆ (J ′)⌊ue−te⌋−1−am−n.

It follows that νJ ′(pe) ≥ νJm(p
e) + ⌊ue − te⌋ − 1 + am − n. Dividing by pe and letting e → ∞, we

obtain

c(J ′) ≥ c(Jm) + lim
e→∞

ue
pe

− lim
e→∞

te
pe

= c(Jm) +

(
a1
d1

+ · · ·+ ar
dr

)
−
(
am
dm

(1− σ) + σc(Jm)

)
= (1− σ)

(
c(Jm)− am

dm

)
+

(
a1
d1

+ · · ·+ ar
dr

)

Since σ < 1 and c(Jm) > am
dm

, it follows that the above quantity exceeds DP (J ′).
In characteristic zero, one notes that for any ideal J satisfying conditions (1)-(4), the reduction

of the pair (R, J) to characteristic p ≫ 0 satisfies conditions (1)-(4). Moreover, the quantity σ is
constant for p≫ 0. Assuming the reduction notation of Definition 3.13, we have

c(J) = lim
µ∈SpecA
|A/µ|→∞

c(Jµ) ≥ (1− σ) lim
µ∈SpecA
|A/µ|→∞

c(Jm,µ) +DP (J) = (1− σ)c(Jm) +DP (J) > DP (J).



CLASSIFICATION OF MINIMAL SINGULARITY THRESHOLDS 17

□

Lemmas 4.4 to 4.6 combine to give us a proof of Theorem 4.14 in the case of a complete inter-
section.

Proposition 4.7. Assume the setup of Definition 4.1 and suppose c(I) = DP (I). Then there exists
φ ∈ GLn(K) depending only on I1, . . . , Ir−1 such that φ∗I = D.

Proof. Using Lemma 4.4, we produce φ ∈ GLn(K) such that φ∗I satisfies Equation (†). By Lem-
mas 4.5 and 4.6, we have φ∗I = D. □

4.2. Generalizations.

Lemma 4.8. Let R = K[x1, . . . , xn] and let m = (x1, . . . , xn). Let I ⊆ R be a homogeneous ideal
and J ⊆ m any ideal. Then we have ⋂

m>0

I + Jm = I.

Proof. By [21, Corollary 6.8.5], we have

IRm ⊆
⋂
m>0

IRm + JmRm ⊆
⋂
m>0

IRm +mmRm = IRm.

As I = IRm = IRm ∩R, we have the following, from which the claim follows.

I ⊆
⋂
m>0

(
IRm + JmRm ∩R

)
⊆ IRm ∩R = I.

□

The fact that φ depends only on I1, . . . , Ir−1 allows us to prove a version of Theorem 4.14 for
complete intersections of smaller codimension.

Proposition 4.9. Let K be an algebraically-closed field and set R = K[x1, . . . , xn]. Set m =
(x1, . . . , xn). Suppose r < n and I = (f1, . . . , fr) is a complete interesection, where fi is homoge-
neous of degree di and d1 ≤ · · · ≤ dr. Then c(I) ≥ 1

d1
+ · · · + 1

dr
with equality if and only if there

exists φ ∈ GLn(K) such that
φ∗I = (xd11 , . . . , x

dr
r ).

Proof. Let L = (ℓr+1, . . . , ℓn) be an ideal generated by n− r linear forms. Then I+L
L is a complete

intersection of type (d1, . . . , dr) which is primary to m
L , so we have

c(R, I) ≥ c

(
R

L
,
I + L

L

)
≥ DP

(
I + L

L

)
=

1

d1
+ · · ·+ 1

dr
.

Suppose now that c(I) = 1
d1

+ · · · + 1
dr

. Let ℓr+1, . . . , ℓn be general linear forms such that
(f1, . . . , fr, ℓr+1, . . . , ℓr) is a complete intersection.

For each e > dr, let Je := (ℓer+1, . . . , ℓ
e
n). Then I + Je is a complete intersection of

(d1, . . . , dr, e, . . . , e). It follows that
1

d1
+ · · ·+ 1

dr
+
n− r

e
= DP (I + Je) ≤ c(I + Je) ≤ c(I) + c(Je) =

1

d1
+ · · ·+ 1

dr
+
n− r

e
.

By Proposition 4.7, there exists φ ∈ GLn(K) such that for all e > dr, we have φ∗(I + Je) =

(xd11 , . . . , x
dr
r , xer+1, . . . , x

e
n). By Lemma 4.8, we conclude

φ∗I =
⋂
e>dr

φ∗I + Je =
⋂
e>dr

= (xd11 , . . . , x
dr
r ).

□
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Lemma 4.10. Let K be an uncountably infinite field. Let R = K[x1, . . . , xn] and set m =
(x1, . . . , xn). Suppose I ⊆ R is a homogeneous ideal. As in Lemma 3.1, for 1 ≤ j ≤ n, let
πj : R → R/(xj+1, . . . , xn) ∼= K[x1, . . . , xj ] denote the projection map and ιj : K[x1, . . . , xj ] →
K[x1, . . . , xn] the usual embedding. Let > denote the reverse lexicographic order.

Let φ ∈ GLn(K) be very general: for now, we impose the condition that for all m > 0, we have
in>(φ

∗Im) = gin>(I
m); we will impose countably many additional conditions in Lemma 4.13. For

1 ≤ j ≤ n,m > 0, set aj,m := in>(πj(φ
∗Im)). For j > 0, 1 ≤ i ≤ j, let bi,j denote the ith unit

vector of Rj. Set pj(i) := inf{t : tbi,j ∈ Γ(aj,•)}. Then for all j, we have pj(j) = pn(j).

Proof. By Lemma 3.1, we have ιj(aj,•) ⊆ an,• for all 1 ≤ j ≤ n, so we have pj(j) ≤ pn(j).
For the reverse direction, set t = pn(j). Since tbj,n ∈

⋃
m>0

1
2mΓ(an,2m), there exists a se-

quence {am = (am,1, . . . , am,n)}m>0 such that am ∈ Γ(an,2m) for all m and limm→∞ 2−mam =
tbj,n. For any choice of {(am,1, . . . , am,n)}m>0, we also have (⌈am,1⌉, . . . , ⌈am,n⌉) ∈ Γ(an,2m)

and limm→∞
(⌈am,1⌉,...,⌈am,n⌉)

2m = tbj,n. We may therefore assume without loss of generality that
am ∈ (Z+)n for all m > 0, 1 ≤ i ≤ n, hence for all m > 0, we have xam ∈ an,2m .

By [12, Theorem 2.1], an,2m is Borel-fixed, so we have xam,1

1 · · ·xam,j−1

j−1 x
am,j+···+am,n

j ∈ an,2m . By
Proposition 2.27(iii) and (vii), we have

(29) x
am,1

1 · · ·xam,j−1

j−1 x
am,j+···+am,n

j ∈ (ιj ◦ πj)(an,2m) ⊆ ιj

(
πj(an,2m)

)
= aj,m.

It follows that

tbj,j = lim
m→∞

(am,1, . . . , aj−1, aj + · · ·+ an)

m
∈ Γ(aj,•),

which proves pn(j) ≤ t = pn(j). □

Lemma 4.11. Assume the setup of Lemma 4.10. There exists a sequence {a′m}m>0 such that for
all m > 0, we have xa′m ∈ aj,2m and limm→∞ 2−ma′m = pj(j)bj,j.

Proof. Consequently, there exists a sequence {am = (am,1, . . . , am,j)}m>0 such that for all m > 0
we have limm→∞ 2−mam = tbj,j and am ∈ Γ(a2m).

First, note that Γ(a2m) = conv(log(xu) : xu ∈ a2m). If we triangulate Γ(a2m), we may choose
{um,i = (um,i,1, . . . , um,i,j)}ji=0 such that xum,i ∈ a2m and am ∈ conv(um,0, . . . , um,j+1). Reorder
the um,i so that um,0,j ≤ · · · ≤ um,j,j . Since am,j is the average of the um,i,j , we have um,0,j ≤ am,j .
For i < j, we similarly have um,0,i ≤ (j + 1)a0,i.

For all m > 0, set a′m = um,0. Then we have limm→∞ a′m,i = 0 for all i < j, and

t ≤ lim inf
m→∞

2−ma′m,j ≤ lim
m→∞

2−mam,j = t.

It follows that limm→∞ 2−ma′m = tbj,j and for all m > 0, xa
′
m ∈ a2m . □

Lemma 4.12. Let K be an algebraically-closed field and R = K[x1, . . . , xj ]. Let q be a homogeneous
prime ideal of codimension j − 1 with xj /∈ q. If > denotes the reverse lexicographic order, then for
all m > 0 we have in>(q

m) = (x1, . . . , xj−1)
m.

Proof. Since K is algebraically-closed, there exist linear forms ℓ1, . . . , ℓj−1 ∈ R1 such that q =
(ℓ1, . . . , ℓj−1). It follows that [in>(q)]1 is generated by in>(ℓ1∧ . . . ℓj−1), which is equal to x1∧ · · · ∧
xj−1 by the fact that xj /∈ span(ℓ1, . . . , ℓj−1). Consequently, we have (x1, . . . , xj) ⊆ in>(q). By [8,
Theorem 15.17], in>(q) and q have the same Hilbert series, so we in fact have (x1, . . . , xj) = in>(q).

For m > 1, a similar analysis applies. We have the standard containment (x1, . . . , xj−1)
m =

in>(q)
m ⊆ in>(q

m). As (x1, . . . , xj−1)
m has the same Hilbert series as q, the result follows. □

Lemma 4.13. Assume the setup of Lemmas 4.10 and 4.11. Further assume that K = K. Write
I = I1 + · · · + Ir, where each Ii is generated by di-forms and d1 < · · · < dr. For 1 ≤ j ≤ r, set
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hi := codim(I1 + · · · + Ii) − codim(I1 + · · · + Ii−1). For 1 ≤ i ≤ n, we also define qi := j, where
1 ≤ j ≤ r such that h1+ · · ·+hj−1 < i ≤ h1+ · · ·+hj. Then for all 1 ≤ j ≤ n, we have pn(j) = dqj .

Proof. Before we begin the proof, we first state the additional generality conditions on φ. For all
m > 0, assume that in>(πj(φ∗Im)) = gin>(πj(φ

∗Im)) = πj(in>(φ
∗Im)); this is possible by repeated

application of [3, Theorem 1.13.]. Since codimπj(φ
∗(I1 + · · · + Iqj−1)) < j, we may also choose φ

such that xj /∈
√
πj(φ∗(I1 + · · ·+ Iqj−1)). Finally, since codimπj(I1+ · · ·+Iqj ) ≥ j, we may choose

φ such that πj(φ∗(I1 + · · ·+ Iqj )). Each of these conditions is satisfied by a general choice of φ, so
they may be realized simultaneously.

Set J = πj(φ
∗I). By construction of φ, in the language of Lemma 4.10 we have aj,m = in>(J

m).
By construction of φ, we have xj /∈

√
πj(φ∗(I1 + · · ·+ Iqj−1)), so we may choose a minimal prime

p over πj(φ∗(I1+ · · ·+ Iqj−1)) such that xj /∈ p. As codim p ≤ j− 1, we may choose a homogeneous
prime ideal q ⊇ p such that codim q = j − 1 and xj /∈ q. By Lemma 4.12, we have in>(q

m) =
(x1, . . . , xj−1)

m for all m > 0.
By Lemma 4.11, choose a sequence {am}m>0 such that xam ∈ a2m for all m > 0 and

limm→∞ 2−mam = pj(j)bj,j . Let em := am,1 + · · ·+ am,j . For all m > 0, we have

[J2m ]em =

 ∑
γ1+···+γr=2m

γ1d1+···+γr≤em

πj(φ
∗I1)

γ1 · · · Iγrr


em

For 1 ≤ i ≤ qj − 1, we have Ii ⊆ q. For qj ≤ i ≤ r, we have Ii ⊆ (x1, . . . , xj) = m. It follows that

[J2m ]em ⊆

 ∑
α+β=2m

βdqj≤em

qαmβ


em

⊆

[
q
2m−

⌊
em
dqj

⌋]
em

.

Taking initial ideals of both sides, we have xam ∈ (x1, . . . , xj)
2m−

⌊
em
dqj

⌋
. Consequently, we have

em−am,j = am,1+ · · ·+am,j−1 ≥ 2m−
⌊
em
dqj

⌋
. As limm→∞ 2−m(am,1+ · · ·+am,j−1) = 0, this yields

0 ≤ lim inf
m→∞

2−m

(
2m −

⌊
em
dqj

⌋)
= 1− 1

dqj
lim inf
m→∞

am,j

dq,j
= 1− pj(j)

dqj
.

From the above equation, we have pj(j) ≥ dqj . For the reverse containment, we have by Lemma 3.9
that mdqj ⊆ J . It follows that xm+j−1

j ∈ Jm for all m > 0, hence pj(j) ≤ dqj . □

We are now able to prove Theorem 4.14.

Theorem 4.14. Let K be an algebraically-closed field. Let R = K[x1, . . . , xn] and let I ⊆ R be a m-
primary homogeneous ideal. If DP (I) = c(I), then there exist integers d1, . . . , dn and φ ∈ GLn(K)
such that

φ∗I =
(
xd11 , . . . , x

dn
n

)
.y

Proof. By Corollary 3.11, we have

R \ Γ>(a•) = conv

(
0⃗, (e1(I), 0, . . . , 0) ,

(
0,
e2(I)

e1(I)
, 0, . . . , 0

)
, . . . ,

(
0, . . . , 0,

en(I)

en−1(I)

))
.
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Assume the hi, qi notation from Lemma 4.13. If we let L := K((t)), then L is uncountably infi-
nite and algebraically closed. The generic initial ideal is stable under field extension, so applying
Lemma 4.13 to I ⊗K L, we have ej(I)

ej−1(I)
= dqj for all 1 ≤ j ≤ n.

Let J ⊆ I be an ideal generated by hi general elements of Ii for each 1 ≤ i ≤ r. Then J is
a homogeneous (dq1 , . . . , dqn)-complete intersection, so by Lemma 3.10, we have DP (J) = DP (I).
It follows from Proposition 2.23 that J = I, so we have c(J) = c(I) = DP (I) = DP (J). By
Proposition 4.7, there exists φ ∈ GLn(K) such that

φ∗I = φ∗J =
(
x
dq1
1 , . . . , x

dqn
n

)
.

□

5. Future Work

We can restate Theorem 4.14 as follows.

Proposition 5.1. Let R = K[x1, . . . , xn],m = (x1, . . . , xn), and let I be an m-primary ideal. Then
I = (xd11 , . . . , x

dn
n ) in suitable coordinates if and only if DP (I) = lct(I) and I is a homogeneous

ideal.

We conjecture that the second condition is unnecessary.

Conjecture 5.2. Assume the setup of Proposition 5.1. If DP (I) = lct(I), then I is a homogeneous
ideal.
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