Classification of Minimal Singularity Thresholds

Benjamin Baily

Department of Mathematics University of Michigan

April 6, 2025

Definition

We fix the following notation.

Definition

We fix the following notation.

- k an algebraically-closed field
- $R = k[x_1, \ldots, x_n]$
- $\mathfrak{m} = (x_1, \ldots, x_n)$

[DFEM04, Theorems 0.1, 1.4]

Let char k = 0 and let I be an m-primary ideal. Then

$$rac{n}{e(I)^{1/n}} \leq \mathsf{lct}(I)$$

with equality if and only if \overline{I} is a power of \mathfrak{m} .

[DFEM04, Theorems 0.1, 1.4]

Let char k = 0 and let I be an m-primary ideal. Then

$$rac{n}{e(I)^{1/n}} \leq \mathsf{lct}(I)$$

with equality if and only if \overline{I} is a power of \mathfrak{m} .

This bound is sharp, but it can be refined!

• *I* an m-primary ideal

- I an m-primary ideal
- h_1, \ldots, h_n general linear forms

- *I* an m-primary ideal
- h_1, \ldots, h_n general linear forms
- For $0 \le j \le n$, the mixed multiplicity $e_j(I)$ is given by the following.

$$e_j(I)=e\left(rac{I+(h_{j+1},\ldots,h_n)}{(h_{j+1},\ldots,h_n)}
ight).$$

- I an m-primary ideal
- h_1, \ldots, h_n general linear forms
- For $0 \le j \le n$, the mixed multiplicity $e_j(I)$ is given by the following.

$$e_j(I) = e\left(\frac{I+(h_{j+1},\ldots,h_n)}{(h_{j+1},\ldots,h_n)}\right).$$

• Standard definition in terms of the colengths of $I^r \mathfrak{m}^s$ for $r, s \in \mathbb{Z}^+$.

Definition

$$\mathsf{DP}(I) = rac{e_0(I)}{e_1(I)} + \dots + rac{e_{n-1}(I)}{e_n(I)}.$$

Definition

$$\mathsf{DP}(I) = rac{e_0(I)}{e_1(I)} + \dots + rac{e_{n-1}(I)}{e_n(I)}$$

[BA16, Corollary 11]

If $I \subseteq J$, then $DP(I) \leq DP(J)$ with equality iff $\overline{I} = \overline{J}$.

Definition

$$\mathsf{DP}(I) = rac{e_0(I)}{e_1(I)} + \dots + rac{e_{n-1}(I)}{e_n(I)}.$$

[BA16, Corollary 11]

If
$$I \subseteq J$$
, then $DP(I) \leq DP(J)$ with equality iff $\overline{I} = \overline{J}$.

Example

Example If I is a d_1, \ldots, d_n -complete intersection, then $DP(I) = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

Definition

$$\mathsf{DP}(I) = \frac{e_0(I)}{e_1(I)} + \cdots + \frac{e_{n-1}(I)}{e_n(I)}.$$

[BA16, Corollary 11]

If
$$I \subseteq J$$
, then $DP(I) \leq DP(J)$ with equality iff $\overline{I} = \overline{J}$.

Example

Example If I is a d_1, \ldots, d_n -complete intersection, then $DP(I) = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

[DP14, Theorem 1.2], algebraic restatement

• If $I \subseteq \mathbb{C}[x_1, \ldots, x_n]$ is m-primary, then $ne(I)^{-1/n} \leq \mathsf{DP}(I) \leq \mathsf{lct}(I)$.

• Demailly-Pham 2014: if $J = (x_1^{d_1}, ..., x_n^{d_1})$, then DP(J) = Ict(J).

- Demailly-Pham 2014: if $J = (x_1^{d_1}, ..., x_n^{d_1})$, then DP(J) = Ict(J).
- Rashovskii, 2014 [Ras14]: used analytic methods to classify monomial ideals with DP(*I*) = lct(*I*)

- Demailly-Pham 2014: if $J = (x_1^{d_1}, \ldots, x_n^{d_1})$, then DP(J) = Ict(J).
- Rashovskii, 2014 [Ras14]: used analytic methods to classify monomial ideals with DP(*I*) = lct(*I*)
- Bivià-Ausina, 2016 [BA16]: repaired gap in [DP14], used algebraic methods to classify Newton-nondegenerate ideals *I* with DP(*I*) = lct(*I*)

- Demailly-Pham 2014: if $J = (x_1^{d_1}, \ldots, x_n^{d_1})$, then DP(J) = Ict(J).
- Rashovskii, 2014 [Ras14]: used analytic methods to classify monomial ideals with DP(*I*) = lct(*I*)
- Bivià-Ausina, 2016 [BA16]: repaired gap in [DP14], used algebraic methods to classify Newton-nondegenerate ideals I with DP(I) = lct(I)

Theorem 1 (B. 2025):

Let char k = 0 and $I \subseteq R$ an m-primary ideal. If I is homogeneous and lct(I) = DP(I), then

$$I = (x_1^{e_1(I)/e_0(I)}, \dots, x_n^{e_n(I)/e_{n-1}(I)})$$

up to change of variables and integral closure.

Proposition (B. 2025)

Let char k = p > 0 and $I \subseteq R$ an m-primary ideal. Then $DP(I) \leq fpt(I)$.

Proposition (B. 2025)

Let char k = p > 0 and $I \subseteq R$ an m-primary ideal. Then $DP(I) \leq fpt(I)$.

Theorem (B. 2025)

Let char k = p > 0 and $I \subseteq R$ an m-primary ideal. If I is homogeneous and fpt(I) = DP(I), then

$$I = (x_1^{e_1(I)/e_0(I)}, \dots, x_n^{e_n(I)/e_{n-1}(I)})$$

up to change of variables and integral closure.

• Extend classification to the non-homogeneous case

- Extend classification to the non-homogeneous case
- Deduce results in the complex-analytic setting

- Extend classification to the non-homogeneous case
- Deduce results in the complex-analytic setting

Carles Bivià-Ausina.

Log canonical threshold and diagonal ideals.

Proceedings of the American Mathematical Society, 145(5):1905–1916, October 2016.

- Tommaso De Fernex, Lawrence Ein, and Mircea Mustață. Multiplicities and log canonical threshold. Journal of Algebraic Geometry, 13(3):603–615, September 2004.
- Jean-Pierre Demailly and Hoang Hiep Pham. A sharp lower bound for the log canonical threshold. Acta Mathematica, 212(1):1–9, 2014.

Alexander Rashkovskii.

Extremal cases for the log canonical threshold.

Comptes Rendus. Mathématique, 353(1):21-24, November 2014.